Proceedings
of the 7th International Conference on Research in Didactics of the Sciences
DidSci 2016
June 29th – July 1st, 2016

Editors: Paweł Cieśla, Wioleta Kopek-Putała, Anna Baprowska

Pedagogical University of Cracow, Institute of Biology,
Department of Education of Natural Sciences
Kraków 2016
Editors:
Paweł Cieśla, Wioleta Kopec-Putala, Anna Baprowska

7th International Conference on Research in Didactics of the Sciences, (DidSci 2016) was organized by Department of Education of Natural Sciences, Faculty of Geography and Biology, Pedagogical University, Kraków, Poland.

The conference was held from June 29th through July the 1st 2016 in Kraków, Poland

Proceedings were reviewed
by the Members of the Scientific Committee

Typset:
Paweł Cieśla

Cover:
Ewelina Kobylańska

DidSci 2016 Scientific Committee

Chair of the Scientific Committee
Hana Čtrnáctová – the Czech Republic

Members (in alphabetical order)
Agnaldo Arroio – Brazil
Martin Bilek – the Czech Republic
Liberato Cardelini – Italy
Paweł Cieśla – Poland
Hanna Gulińska – Poland
Vasil Hadzhiiliev – Bulgaria
Lubomir Held – Slovakia
Ryszard Maciej Janiuk – Poland
Gayane Nersisyan – the Republic of Armenia
Grzegorz Karwasz – Poland
Jarmila Kmetova – Slovakia
Vincentas Lamanauskas – Lithuania
Małgorzata Nodzyńska – Poland
Henryk Noga – Poland
Wiktor Osuch – Poland
Katarzyna Potyrała – Poland
Miroslav Prokša – Slovakia
Alicja Walosik – Poland
Self-Reported Czech and Slovak Students’ Feedback on Performing Activities in Computer Based Science Lab

Petr Šmejkal¹, Marek Skoršepa², Eva Stratilová Urválková¹

¹Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
²Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, Slovakia

psmejkal@natur.cuni.cz, marek.skorsepa@umb.sk, urvalkov@natur.cuni.cz

Introduction

Microcomputer based laboratory (MBL), also called Probeware, is a prospective tool for more efficient and more interesting teaching of variety of themes attributed to all science branches and well reflects the increasing ratio of employment of instrumenal devices and various probes in lab practice and in common life. In fact, the MBL (Probeware) is a set of various sensors which can be connected to and controlled by various kinds of computer systems (datalogger, PC, smart device, calculator etc.). For the particular MBL system, a common way of connection of individual parts of the system and control of the system is characteristic. In addition to that, the parts of the system are designed with respect to school application, which means user-friendly software, small and robust construction etc. Benefits of MBL were discussed by many authors (Lavonen et al, 2003, Hamne & Bernhard, 2001, Thornton & Sokoloff, 1990, Tinker, 1996), for example, the enhancement of scientific competencies and development of abstract thinking were proved. Although implementation of MBL can bring a variety of advantages and well demonstrate some aspects and themes of the science branches over the experiment made “traditionally”, there are still obstacles which hinder the implementation into Czech and Slovak schools. One of them is a lack of well-designed research based MBL materials (lab worksheets, technical sheets, etc.) and a lack of technical support to teachers implementing the MBL systems into their school practice. There is also a question whether attitudes of students to MBL and sensors are positive or they are oversaturated by computer systems or whether the work with MBL is too complicated. With respect to the mentioned obstacles, in the framework of European project COMBLAB, a new set of inquiry based laboratory activities has been developed and implemented in laboratory courses for secondary school students. The concept of the activities and the activities were already presented during DidSci 2012 conference by Stratilová Urválková et al. (2012) and they are available at www.comblab.eu. This contribution deals with self-reported Czech and Slovak students’ feedback on performing activities in computer based science (MBL) lab and compare the
attitudes and opinions of Czech and Slovak students on work with MBL systems and the presented activities.

Methods

The attitudes and opinions of the students participating the courses were collected through newly designed questionnaire and statistically evaluated. The courses attended totally 664 Czech and Slovak secondary school students (mean age 16.97; SD 1.20) from 15 participating schools (11 in the Czech Republic, 4 in Slovakia). The most of the implementations (919) were realized in the university laboratories (Charles University in Prague, Czech Republic and Matej Bel University in Banská Bystrica, Slovakia). Totally, 1408 (476 SVK + 932 CZE) evaluations have been performed as part of the students participated and evaluated more than one activity). In the questionnaire, students evaluated quality of the activity and work with MBL system. For evaluation purposes, a special tool (a 20-item questionnaire) has been administered to the students after performing each activity (implementation). For this study, seven following questionnaire items were selected to be discussed in more detail: (Item 1) I found the activity interesting and motivating; (Item 2) The instructions were clear to me; (Item 3) Overall, how satisfied were you with the activity; (Item 4) It was easy to set up the experimental equipment, (Item 5) It was easy to work with the computer system; (Item 6) I needed my Teacher’s help to perform the experiment and (Item 7) I would appreciate more frequent use of MBL in my classes. All the items are positive declarative clauses where students expressed their level of agreement on 4-point Likert scale – items 1, 2, 4 - 7 (1 = I totally agree, 2 = I agree, 3 = I disagree, 4 = I totally disagree) or 6-point Likert scale – item 3 (☹☹☹ - ☹☹ - ☹ - ☹ - ☹☹ - ☹☹☹). The data were processed by several statistical methods, such as descriptive statistics, analysis of frequencies and comparative analysis. The significance was determined by non-parametric Mann-Whitney U test or Kruskal-Wallis H test at 0.05 level.

Results

The results showed that majority of the students considered the activities to be interesting and motivating (> 93%) with clear instructions (> 88%). More than 88% stated that work with the MBL system and a set-up of the system was simple, on the other hand, more than 50% of participating students needed some help of teacher. More than 90% of students also consider MBL beneficial for their personal knowledge development and over 70% mentioned that knowledge from the lab course is well applicable in other science courses. This statement was typical independently on the fact whether the MBL system was implemented for the first time or more times. Nevertheless, the significant differences between Czech and Slovak students were identified. Slovak students showed more
positive attitudes to activities (ITEM 1: $U = 155 \ 207.000; \ z = -9.569; \ p = .000$; $MR_{\text{CZE}} = 757.50, MR_{\text{SVK}} = 564.57$; ITEM 2: $U = 136 \ 844.000; \ z = -12.386; \ p = .000$; $MR_{\text{CZE}} = 777.79, MR_{\text{SVK}} = 525.99$; ITEM 3: $U = 110 \ 398.000; \ z = -14.757; p = .000$; $MR_{\text{CZE}} = 772.92, MR_{\text{SVK}} = 470.43$) and to work with MBL system (ITEM 4: $U = 150 \ 359.000; \ z = -10.126; p = .000$; $MR_{\text{CZE}} = 760.12, MR_{\text{SVK}} = 554.38$; ITEM 5: $U = 149 \ 312.000; \ z = -10.562; p = .000$; $MR_{\text{CZE}} = 762.65, MR_{\text{SVK}} = 552.18$). The Slovak students also reported less need of help from teacher (ITEM 6: $U = 284 \ 984.000; \ z = 10.531; p = .000$; $MR_{\text{CZE}} = 612.40, MR_{\text{SVK}} = 837.21$) and they more support wider implementation of MBL into schools (ITEM 7: $U = 165 \ 585.000; \ z = -8.683; p = .000$; $MR_{\text{CZE}} = 700.11, MR_{\text{SVK}} = 586.37$). On the other hand, in overall, the results show that students of both countries positively evaluated the activities as well as work with MBL systems and designed activities and consider their implementation in science courses as meaningful and useful.

Conclusions

The developed and tested activities were evaluated in overall very positively as interesting and motivating; comparing two countries: the activities were evaluated more positively by Slovak students than by Czech students. The Slovak students also considered the setup as well as work with MBL system as easier and they also reported less need of help from teacher than the Czech students. In addition to that, Slovak students would appreciate more frequent use of MBL in lab classes and in overall, they showed higher motivation and more positive attitude than the Czech students. As a consequence, the implementation of MBL and the activities in the Czech Republic could be more complicated for Czech teachers. On the other hand, attitudes of the Czech students are still very positive and majority of students support implementation of MBL and performed activities are considered to be of high quality by both, Czech and Slovak students.

Acknowledgements

We thank students and teachers who participated in the implementation and evaluation of the proposed activities. The work has been supported by EACEA grant No. 517587-LLP-1-2011-1-ES-COMENIUS-CMP and by project PRVOUK P42.

References

Contents

DidSci 2016 Scientific Committee

How Self-Directed Learners Learn Science
Meryem Nur Aydede Yalçın ... 7

Knowledge on Health Protection in the Use of Information and Communication Technologies (ICTs) - A Condition of The Students’ Motivation and Optimization of Physical Curriculum
Zuzana Balazsiová ... 12

The Influence of Organisational Conditions on Effectiveness of Lower Secondary Chemistry Education
Anna Baprowska, Martin Bilek ... 15

Bridging the Gap Between Macroscopic and Microscopic Comprehension of the Mole
Andrzej Barański, Tomasz Sawoszczuk ... 18

Numerical Simulations of Inclined Throw with Regard the Air Resistance
Slavko Buček ... 22

The Effectiveness of Different Approaches to Excursions in Waterworks
Simona Čábelová, Martin Rusek ... 25

Portrait of a Good Teacher
Marcin Chrzanowski, Maria Zachwatowicz ... 28

Outdoor Education
Paweł Cieśla ... 31

Experience and Prospects of Training for Teachers of Chemistry in Conditions of Introduction of New Educational Standards in a Classic University
Aksinya E. Yegorova ... 34

Science in Young People’s Choices
Stefania Elbanowska-Ciemuchowska, Michał Bednarek ... 39

Personalization in Education – from the Concept to the Practice
Anna Florek ... 43

Avogadro’s Hypothesis As a Critical Moment in Inductive Approach How to Build a Concept of Particle Composition of Gases
Ľubomír Held ... 46

Simple Laboratory Experiments with Minerals
Alžbeta Hornáčková, Mária Linkešová ... 49
Educational Means for Simultaneous Development of Chemical and Mathematical Thinking
Matúš Ivan, Renata Šulcová ... 51

Multimedia in Teaching Science
Anna Kamińska, Andrzej Karbowski, Krzysztof Służewski 54

Teacher’s Influence Compared to Students’ Attitude Towards Learning Chemistry in Gimnasium Age Group
Agnieszka Kamińska-Ostęp ... 57

How Colours Are Created?
Grzegorz Karwasz, Andrzej Karbowski, Krzysztof Służewski 60

Problem-Solving Scheme a Key Step in Conceptual Physics Learning
Lorena Kelo, Marie Dede, Esmeralda Guliqani, Sotiraq Marko 64

The Phenomenal Analysis of Problem Solving Success Within the Distance Course for Physics Olympiad Solvers
Marián Kireš, Ján Kušnír .. 67

Amusing Chemistry
Ewelina Kobylańska ... 70

The Choice’s Preference of Mathematical Tasks of Secondary School’s Students
Petra Konečná, Véra Ferdiánová .. 72

The Use of “Entertainment-Education” in Teaching Chemistry, Taking into Account Pupils with Special Educational Needs
Wioleta Kopek-Putała, Martin Bilek ... 75

Teaching the Greenhouse Effect in the Slovak Primary Schools from the Teachers’ Perspective
Lucia Kováčová .. 79

Motivation of Medical Students for Better Understanding of Fundamental Sciences Applications in Medicine
Eva Kralova .. 82

Elements of the IBSE Methodology in the Irresistible Project – the Experience of Polish Teachers Participating in the Project
Małgorzata Krzeczkowska, Iwona Maciejowska, Ewa Odrowąż 85

Teaching Secondary School Students How to Derive Information from the Reference Literature Chemistry Materials
Małgorzata Krzeczkowska, Barbara Krajewska 88
What and Why – Non-Formal Education of Children in Poland – Possibilities And Experiences
Małgorzata Krzeczkowska, Emilia Grygo-Szymanko, Paweł Świt, Patryk Własiuk

The Polish Biology Olympiad: Analysis of the Students’ Research Projects in the Context of the Scientific Method Competence and the Selection of Research Topics
Joanna Lilpop, Marcin M. Chrzanowski

Functional Technologic Models of Historical Processing Devices and Their Didactic Use 3. Production of Sugar
Mária Linkešová, Ivona Paveleková, Róbert Knap

Small Experimental Projects in Preservice Science Teachers´ Professional Development or Let’s Use our Heads to Play
Veronika Machková, Michaela Křížová, Barbora Uždilová

Towards to Implementation of Mobile Technologies into Laboratory Work at Lower Secondary School Level
Veronika Machková; Kateřina Chroušťová; Pavla Hanzalová

3D Printed VSEPR Models and 3D Periodic Tables for Chemistry Education
Luděk Míka, Petr Šmejkal

Sustainable Development in Chemistry Textbooks at ISCED3 Level
Małgorzata Musialik, Marcin M. Chrzanowski, Irmina Buczek, Barbara Ośtrowska

Codes With Variable Bit-Length and Their Didactic Models
Michal Musílek

Implementation of a Sustainable Development Program as an Ecological Teaching and Educational Tool
Gayane S. Nersisyan, Mariam A. Grigoryan

How to Show Water at the Micro-World Level?
Małgorzata Nodzyńska

The Spirit of Chemistry in a School Textbook
Małgorzata Nodzyńska, Paweł Cieśla

Controversial Socio-Scientific Issues in Chemistry Teachers’ Education
Ján Reguli

The Most Common Misconceptions of Primary School Students Associated with Oxygen
Monika Šindelková
Comprehending Newly Designed Activities for Computer Based Science Lab by Slovak and Czech Students
Marek Skoršepa, Petr Šmejkal ... 136

Self-Reported Czech and Slovak Students’ Feedback on Performing Activities in Computer Based Science Lab
Petr Šmejkal, Marek Skoršepa, Eva Stratilová Urválková......................... 139

Newly Designed MBL Activities Perceived by Slovak and Czech Secondary School Teachers (A Comparative Study)
Petr Šmejkal, Marek Skoršepa, Eva Stratilová Urválková.......................... 143

Science Summer Camps for Children - How We Do and How Should We Do?
Petr Šmejkal, Michaela Šmejkalová, Veronika Sutrová, Kateřina Freyerová, Zuzana Míková... 147

Model of Teaching of Mobile Applications Programming in Non-Formal Education
Ľubomír Šnajder, Ján Guniš, Ľubomír Antoni .. 150

Study of Students’ Understanding of Irreversible Processes
Libuše Švecová .. 154

Indicators of Educational Results in Chemistry Teaching
Jan Tříska, Hana Čtrnáctová ... 157

Impact of an Experiential Approach upon the Development of Science Teaching Skills within Student Teachers in Francophone Minority Communities
Louis Trudel, Abdeljalil Métiou 160

Interactivity in Education
Zuzana Václavíková ... 164

Field-Based Research Projects in the Polish Biology Olympiad
Maria Zachwatowicz, Marcin M. Chrzanowski, Joanna Lilpop.................... 167

Kinaesthetic Teaching & Learning in Daily School Practice – How Do It?
Paulina Zimak-Piekarczyk .. 170