Proceedings
of the 7th International Conference on Research in Didactics of the Sciences

DidSci 2016
June 29th – July 1st, 2016

Editors: Paweł Cieśla, Wioleta Kopek-Putała, Anna Baprowska

Pedagogical University of Cracow, Institute of Biology,
Department of Education of Natural Sciences
Kraków 2016
Editors:
Paweł Cieśla, Wioleta Kopek-Putała, Anna Baprowska

7th International Conference on Research in Didactics of the Sciences, (DidSci 2016) was organized by Department of Education of Natural Sciences, Faculty of Geography and Biology, Pedagogical University, Kraków, Poland.

The conference was held from June 29th through July the 1st 2016 in Kraków, Poland

Proceedings were reviewed by the Members of the Scientific Committee

Typset: Paweł Cieśla

Cover: Ewelina Kobylańska

DidSci 2016 Scientific Committee

Chair of the Scientific Committee
Hana Čtrnáctová – the Czech Republic

Members (in alphabetical order)
Agnaldo Arroio – Brazil
Martin Bilek – the Czech Republic
Liberato Cardelini – Italy
Paweł Cieśla – Poland
Hanna Gulińska – Poland
Vasil Hadzhiiliev – Bulgaria
Lubomir Held – Slovakia
Ryszard Maciej Janiuk – Poland
Gayane Nersisyan – the Republic of Armenia
Grzegorz Karwasz – Poland
Jarmila Kmetova – Slovakia
Vincentas Lamanauskas – Lithuania
Małgorzata Nodzyńska – Poland
Henryk Noga – Poland
Wiktor Osuch – Poland
Katarzyna Potyrała – Poland
Miroslav Prokša – Slovakia
Alicja Walosik – Poland
Comprehending Newly Designed Activities for Computer Based Science Lab by Slovak and Czech Students

Marek Skoršepa, Petr Šmejkal

Slovakia, Czech Republic
marek.skorsepa@umb.sk, psmejkal@natur.cuni.cz

Introduction

Computer aided experiments represent a popular way of experimenting in science education. Moreover, this kind of experimenting was confirmed beneficial for the process of learning by many prominent authors and their studies (Aksela, 2005, Lavonen et al. 2003).

Our contribution deals with an implementation of a set of 18 newly designed research-based computer supported laboratory activities for Chemistry (12 activities) and Biology (6 activities), which were proposed by an international team of researchers from 5 European countries: Spain, Czech Republic, Austria, Finland and Slovakia (Tortosa et al., 2013). More specifically, the partial results from Czech and Slovak part of the research is presented. The main aim of the study is to answer the questions related to understanding the objectives of proposed and implemented activities by the secondary school students. All activities have the uniform structure inspired by the previous study (Tortosa, 2012). They are designed to be student-centered reflecting the IBSE principles and POE sequence (Predict – Observe – Explain) suggested by White & Gunstone (1992).

Methods

During the process of implementation with secondary school students (mean age 16.97; SD 1.20) 1408 evaluations were performed with 664 students from 15 participating schools (11 in Czech Republic, 4 in Slovakia). The most of the implementations (919) were realized in the university laboratories (Charles University in Prague, Czech Republic and Matej Bel University in Banská Bystrica, Slovakia) because of the lack of necessary equipment in the schools.

In order to gain a relevant feedback about the quality of tested activities a special tool (a 20-item questionnaire) has been administered to the respondents after performing each activity (implementation). For this study five following questionnaire items were selected to discuss in more detail: (Item 1) *I understood the objectives of the activity*; (Item 2) *List the objectives of the activity*; (Item 3) *I need my teacher’s help to understand the activity*; (Item 4) *Computer measuring system helped me interpret the results* and (Item 5) *I think the activity could
be done without computer measuring system. Items number 1, 3, 4 and 5 are positive declarative clauses where students expressed their level of agreement on 4-point Likert scale (1 = I totally agree, 2 = I agree, 3 = I disagree, 4 = I totally disagree). In open item number 2 the accuracy of the responses was evaluated on the 4-point scale as follows: 1 = correct answer, 2 = more or less correct answer, 3 = not sufficient answer, 4 = totally erroneous answer. Data were processed by several statistical methods, such as descriptive statistics, analysis of frequencies and comparative analysis (gender, subject, country, age, place of implementation). The significance was determined by non-parametric Mann-Whitney U test or Kruskal-Wallis H test at 0.05 level.

Results

Analysis of frequencies revealed that the most students (94.7%) think that they understand the objectives of implemented activity (cumulative percent for all answers of agreement with the declarative clause has been taken into account). However, when they were asked to list the objectives, only 58.1% of correct (scale point 1) or more or less correct (scale point 2) answers were provided. As these results didn’t distinguish between the activities we also compared them and identified the most difficult ones to be revised. Comparisons based on different place of implementation showed that students performing in university not only felt more competent but also reported more correct answers than students working in the schools (ITEM 1: \(U = 251,020.000; z = 6.356; p = .000; \) MR_{school} = 757.25, MR_{university} = 643.06; ITEM 2: \(U = 251,020.000; z = 6.356; p = .000; \) MR_{school} = 726.75, MR_{university} = 596.35). About 45% of the students declared the need of their teacher’s help in understanding the activity objectives. Interestingly, students performing in university reported significantly less frequent need of the teacher’s help than students implementing in the schools (\(U = 178,029.000; z = -5.486; p = .000; \) MR_{school} = 612.51; MR_{university} = 730.13). In ITEM 4 the most students reported that computer measuring system helped them interpret the results. Moreover, students working in universities considered computer measuring system helpful more often than students in the schools (\(U = 250,486.000; z = 5.916; p = .000; \) MR_{school} = 765.95; MR_{university} = 647.80). Surprisingly, when we asked students if they think the activity they are just performing could be also realized without computer measuring system, more than one third of them (35.4%) reported positive answers.

Conclusions

The actual study uncovered that most students tend to perceive their level of understanding the activity more overrated than reality. This fact is one of the important one to help us refine the activities. Furthermore, the study also showed an interesting impact of place of implementation on student’s level of engagement.
It seems that students working in university probably felt more competent to figure out the activities than students implementing in the schools. They also reported less need of their teachers help in understanding the activities. The level of help of computer measuring system in interpreting the results was declared more notably by the students working in university as well. We can presume that new and serious environment like university and its laboratory could influence students in their behaviour and make them more engaged and active for learning. It is promising that almost all students considered computer measuring system helpful in solving the experimental problem they were working on. A bit surprising is that about one third of responses haven’t recognized the importance of computer measuring system support in the activities. In some activities students thought they could be performed without computer measuring system. We suppose that such opinions could be influenced by not sufficient experience of our students with computer based experimenting. Namely, it was the first experience with computer measuring system for the most respondents. In conclusion, our findings suggest that tested research-based laboratory materials could be useful and of quality for the most of the students. However further research is needed to comprehend all relations recorded by this study.

Acknowledgements

Support by grants KEGA No. 029UMB-4/2014 and EACEA No. 517587-LLP-1-2011-1-ES-COMENIUS-CMP is acknowledged.

References

Contents

DidSci 2016 Scientific Committee

How Self-Directed Learners Learn Science
Meryem Nur Aydede Yalçın ... 7

Knowledge on Health Protection in the Use of Information and Communication Technologies (ICTs) - A Condition of The Students’ Motivation and Optimization of Physical Curriculum
Zuzana Balazsiova ... 12

The Influence of Organisational Conditions on Effectiveness of Lower Secondary Chemistry Education
Anna Baprowska, Martin Bilek.. 15

Bridging the Gap Between Macroscopic and Microscopic Comprehension of the Mole
Andrzej Barański, Tomasz Sawoszczuk .. 18

Numerical Simulations of Inclined Throw with Regard the Air Resistance
Slavko Buček .. 22

The Effectiveness of Different Approaches to Excursions in Waterworks
Simona Čábelová, Martin Rusek ... 25

Portrait of a Good Teacher
Marcin Chrzanowski, Maria Zachwatowicz 28

Outdoor Education
Paweł Cieśla .. 31

Experience and Prospects of Training for Teachers of Chemistry in Conditions of Introduction of New Educational Standards in a Classic University
Aksinya E. Yegorova .. 34

Science in Young People’s Choices
Stefania Elbanowska-Ciemuchowska, Michał Bednarek 39

Personalization in Education – from the Concept to the Practice
Anna Florek ... 43

Avogadro’s Hypothesis As a Critical Moment in Inductive Approach How to Build a Concept of Particle Composition of Gases
Ľubomír Held ... 46

Simple Laboratory Experiments with Minerals
Alžbeta Hornáčková, Mária Linkešová .. 49
Educational Means for Simultaneous Development of Chemical and Mathematical Thinking
Matúš Ivan, Renata Šulcová

Multimedia in Teaching Science
Anna Kamińska, Andrzej Karbowski, Krzysztof Służewski

Teacher’s Influence Compared to Students’ Attitude Towards Learning Chemistry in Gimnasium Age Group
Agnieszka Kamińska-Ostęp

How Colours Are Created?
Grzegorz Karwasz, Andrzej Karbowski, Krzysztof Służewski

Problem-Solving Scheme a Key Step in Conceptual Physics Learning
Lorena Kelo, Marie Dede, Esmeralda Guliqani, Sotiraq Marko

The Phenomenal Analysis of Problem Solving Success Within the Distance Course for Physics Olympiad Solvers
Marián Kireš, Ján Kušnír

Amusing Chemistry
Ewelina Kobylańska

The Choice’s Preference of Mathematical Tasks of Secondary School’s Students
Petra Konečná, Věra Ferdiánová

The Use of “Entertainment-Education” in Teaching Chemistry, Taking into Account Pupils with Special Educational Needs
Wioleta Kopek-Putała, Martin Bilek

Teaching the Greenhouse Effect in the Slovak Primary Schools from the Teachers’ Perspective
Lucia Kováčová

Motivation of Medical Students for Better Understanding of Fundamental Sciences Applications in Medicine
Eva Kralova

Elements of the IBSE Methodology in the Irresistible Project – the Experience of Polish Teachers Participating in the Project
Małgorzata Krzeczkowska, Iwona Maciejowska, Ewa Odrowąż

Teaching Secondary School Students How to Derive Information from the Reference Literature Chemistry Materials
Małgorzata Krzeczkowska, Barbara Krajewska
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What and Why – Non-Formal Education of Children in Poland – Possibilities And Experiences</td>
<td>Małgorzata Krzeczkowska, Emilia Grygo-Szymanko, Paweł Świt, Patryk Własiuk</td>
<td>91</td>
</tr>
<tr>
<td>The Polish Biology Olympiad: Analysis of the Students’ Research Projects in the Context of the Scientific Method Competence and the Selection of Research Topics</td>
<td>Joanna Lilpop, Marcin M. Chrzanowski</td>
<td>94</td>
</tr>
<tr>
<td>Functional Technologic Models of Historical Processing Devices and Their Didactic Use 3. Production of Sugar</td>
<td>Mária Linkešová, Ivona Paveleková, Róbert Knap</td>
<td>97</td>
</tr>
<tr>
<td>Small Experimental Projects in Preservice Science Teachers’ Professional Development or Let’s Use our Heads to Play</td>
<td>Veronika Machková, Michaela Křižová, Barbora Uždilová</td>
<td>100</td>
</tr>
<tr>
<td>Towards to Implementation of Mobile Technologies into Laboratory Work at Lower Secondary School Level</td>
<td>Veronika Machková; Kateřina Chroušťová; Pavla Hanzalová</td>
<td>103</td>
</tr>
<tr>
<td>3D Printed VSEPR Models and 3D Periodic Tables for Chemistry Education</td>
<td>Luděk Míka, Petr Šmejkal</td>
<td>107</td>
</tr>
<tr>
<td>Sustainable Development in Chemistry Textbooks at ISCED3 Level</td>
<td>Małgorzata Musialik, Marcin M. Chrzanowski, Irmina Buczek, Barbara Ośtrowska</td>
<td>110</td>
</tr>
<tr>
<td>Codes With Variable Bit-Length and Their Didactic Models</td>
<td>Michal Musílek</td>
<td>114</td>
</tr>
<tr>
<td>Implementation of a Sustainable Development Program as an Ecological Teaching and Educational Tool</td>
<td>Gayane S. Nersisyan, Mariam A. Grigoryan</td>
<td>118</td>
</tr>
<tr>
<td>How to Show Water at the Micro-World Level?</td>
<td>Małgorzata Nodzyńska</td>
<td>122</td>
</tr>
<tr>
<td>The Spirit of Chemistry in a School Textbook</td>
<td>Małgorzata Nodzyńska, Paweł Cieśla</td>
<td>125</td>
</tr>
<tr>
<td>Controversial Socio-Scientific Issues in Chemistry Teachers’ Education</td>
<td>Ján Reguli</td>
<td>129</td>
</tr>
<tr>
<td>The Most Common Misconceptions of Primary School Students Associated with Oxygen</td>
<td>Monika Šindelková</td>
<td>133</td>
</tr>
</tbody>
</table>
Comprehending Newly Designed Activities for Computer Based Science Lab by Slovak and Czech Students
Marek Skoršepa, Petr Šmejkal ... 136

Self-Reported Czech and Slovak Students’ Feedback on Performing Activities in Computer Based Science Lab
Petr Šmejkal, Marek Skoršepa, Eva Stratilová Urválková......................... 139

Newly Designed MBL Activities Perceived by Slovak and Czech Secondary School Teachers (A Comparative Study)
Petr Šmejkal, Marek Skoršepa, Eva Stratilová Urválková 143

Science Summer Camps for Children - How We Do and How Should We Do?
Petr Šmejkal, Michaela Šmejkalová, Veronika Sutrová, Kateřina Freyerová, Zuzana Míková... 147

Model of Teaching of Mobile Applications Programming in Non-Formal Education
Ľubomír Šnajder, Ján Guniš, Ľubomír Antoni .. 150

Study of Students’ Understanding of Irreversible Processes
Libuše Švecová ... 154

Indicators of Educational Results in Chemistry Teaching
Jan Tříska, Hana Čtrnáctová ... 157

Impact of an Experiential Approach upon the Development of Science Teaching Skills within Student Teachers in Francophone Minority Communities
Louis Trudel, Abdeljalil Métioui ... 160

Interactivity in Education
Zuzana Václavíková .. 164

Field-Based Research Projects in the Polish Biology Olympiad
Maria Zachwatowicz, Marcin M. Chrzanowski, Joanna Lilpop 167

Kinesthetic Teaching & Learning in Daily School Practice – How Do It?
Paulina Zimak-Piekarczyk .. 170