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Preface to the second edition vii

Preface to the second edition
The three parts contained in this textbook are still strongly based on the lecture notes
ALGEBRA I – III published by the present authors about twenty years ago in the Slovak
language [5, 7, 4]. And the textbook still presents those three volumes of lecture notes
together as one unit of Basic Algebra intended mainly for future teachers of Mathematics.

What is new with this second edition is that answers, solutions or at least hints are
provided at the end of the textbook to all 271 exercises presented in it (113 exercises in
Part I, 56 exercises in Part II and 102 exercises in Part III). I believe that these answers or
solutions, which of course prolonged the second edition, will be of some help to the students
or other interested readers of this textbook (even more in the present times of pandemics).
Since the second author of this textbook retired a few years ago and decided not be involved
in preparation of this second edition, the answers or solutions to exercises at the end of the
textbook were prepared together with one of our gifted present students of Mathematics,
Ing. Veronika Remenárová. She is the author of the answers or solutions to exercises
from Chapters 1-6 and 14-25 of this textbook (112 exercises) while I am responsible for
the answers or solutions to exercises from the remaining Chapters 7-13 and 26-35 (159
exercises).

Within the time period of five years from the publication of the first edition of this
textbook in January 2016, its Parts I and II have been used by myself every academic
year as the primary teaching material for the existing one semester courses Algebra I and
Algebra II atMatej Bel University in Banská Bystrica. These two courses have been aimed,
at the Bc level, for future teachers of Mathematics in their third year of study as well as
for students of a purely Mathematics degree in their second year of study. Part III of the
textbook was used in the second semester of the last academic year for the course Linear
algebra I for the first year students of Mathematics at Matej Bel University. Due to the
pandemics, the teaching of the courses during majority of the semester at the spring 2020
had to be in online form. Since the teaching of the courses also continues online during the
autumn 2020, I believe that answers, solutions or hints provided to the exercises in this
textbook will assist the students as much as possible under the more difficult circumstances.

As the preparer of this second edition, I am expressing my gratitude for their com-
ments to the two referees, prof. RNDr. Vladimír Janiš, CSc. (Banská Bystrica) and
doc. PaedDr. Martin Papčo, PhD. (Ružomberok). I wish to thank colleagues doc. Mgr. Ján
Karabáš, PhD. and Mgr. art. Zuzana Ceglédyová for their assistance with preparing the
design of the textbook for this second edition.

I am also expressing my thanks to my former students of the courses Algebra I, Algebra
II and Linear algebra I for their willingness to follow the courses in English. (At least all
writings during the three courses had always been in English and followed the respective
three parts of this textbook, while my explanations of the content and the communication
with students had partly been in Slovak.) Teaching about a dozen of courses using the first
edition of this textbook certainly helped me to estimate its value for the courses properly
(and I have to admit that I liked teaching following this textbok) and to correct some typos
found in the first edition. Using the first edition of the textbook in close collaboration with
the students over the past five years also encouraged me to prepare this second edition of
the textbook. I believe it will serve well in the above mentioned three courses of Basic
Algebra at Matej Bel University in Banská Bystrica for many coming years.

Banská Bystrica, November 30, 2020 Miroslav Haviar
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Notation
Throughout this textbook we use the following notation:

N the set of all natural numbers
N+ the set of all positive natural numbers, N := N+ ∪ {0}
Z the set of all integers
Q the set of all rational numbers
R the set of all real numbers
C the set of all complex numbers
F a field
0F, 1F the zero resp. the unit element of a field F
a|b the number a divides the number b
a ≡m b a is congruent to b modulo m
Zm the set of all residue classes of integers modulo m
Zm the set of all remainders of integers modulo m
am or a the residue class of integers modulo m represented by a
|S| the cardinality of a set S
P(S) the power set of a set S
AB the set of all functions from a set B into a set A
idS or i the identity function on a set S
[M ] a groupoid (group, vector space) generated by a set M
〈M〉 a ring (field) generated by a set M
Sn the symmetric group of degree n
Dn the dihedral group of degree n
F[x] the ring of polynomials in one indeterminate x over a field F
F[x1, . . . , xn] the ring of polynomials in indeterminates x1, . . . , xn over a field F
F〈x〉 the ring of polynomial functions of one variable x over a field F
A = [aij ] a matrix A with elements aij

In the identity matrix of degree n
Mm,n(F) the set of all matrices of type m× n over a field F
Mn(F) the set of all square matrices of degree n over a field F
AT the transpose matrix of a matrix A
A−1 the inverse matrix of a matrix A
|A| the determinant of a matrix A
V (F) a vector space over a field F
Vn(F) the n-dimensional vector space over a field F
‖α‖ the norm (length) of a vector α
ε1, . . . , εn the unit vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
dim(T ) the dimension of a space T
s(β, γ) a scalar product s of vectors β, γ
T⊥ the orthogonal complement of a subspace T
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Preface to the first edition
The three parts of this textbook are based on the lecture notes ALGEBRA I – III published
by the present authors in the Slovak language [5], [7], [4]. This textbook presents those
three volumes of lecture notes together as one unit of Basic Algebra.

It intentionally presents it in English which nowadays is the common science and uni-
versity language; we believe the students these days should get used to English during their
studies as soon as possible. With respect to the present intense migration waves into Eu-
rope we remark that it is quite possible in the coming years that some of our future teachers
of mathematics reading this textbook will be these migrants or that our future teachers of
mathematics might teach in their classes children arriving to Europe these days. We are
therefore convinced that English has been appropriately chosen as the language here.

Parts I and II of this textbook are aimed at and can be used as the teaching material
for the existing courses Algebra I: Algebraic structures and Algebra II: Polynomial algebra
at Matej Bel University in Banská Bystrica. Part III can be used for the course Linear
algebra I while the course Linear algebra II would obviously require a more advanced linear
algebra content.

The textbook assumes that the students and its other possible readers have already
taken at least some introductory course in mathematics. It assumes the knowledge of
fundamental concepts such as set, n-tuple, relation, function, operation and the concepts
related to operations such as associativity, commutativity, neutral element and inverse
element. (At Matej Bel University this knowledge could be gained from the lecture notes
An introduction into the study of mathematics [8] for such an introductory course.) Though
the textbook is primarily intended for future teachers of mathematics, it can also be used for
students of purelymathematical degrees at bachelor level. Comments from the students and
other readers are welcomed at miroslav.haviar@umb.sk and pavel.klenovcan@gmail.com.

We are very indebted to Emeritus Professor Gareth Jones (Southampton) for his careful
reading of the manuscript of this textbook and for his extremely valuable and detailed
comments on the preface, the introduction and on nine chapters of the textbook (Chapters
1,2,9,13-15,25,28,35). We believe that there will be more time available before the next
edition of this textbook to receive his valuable comments on the remaining chapters, too.
We also express our gratitude for their comments to the other two referees, doc. RNDr.
Tomáš Zdráhal, CSc. (Olomouc) and prof. RNDr. Rudolf Zimka, PhD. (Banská Bystrica),
and for detailed comments to the whole text to doc. RNDr. Alfonz Haviar, CSc. We wish
to thank our colleague doc. Mgr. Ján Karabáš, PhD. for his valuable help with the tables
and figures and with preparing the design of this textbook and to Mgr. art. Zuzana
Ceglédyová for creating the cover design. The first author also expresses his thanks for
the support of the project Mobility-Enhancing Research, Science and Education at Matej
Bel University (ITMS code 26110230082) under the Operational Programme of Education
cofinanced by the European Social Foundation, and to Christ Church College in Oxford
for its hospitality during the final stages of preparation of this textbook.

Banská Bystrica, November 17, 2015 Miroslav Haviar and Pavel Klenovčan
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Introduction
Algebra is one of the oldest areas of mathematics. In the past it was understood as a
discipline about calculations with letters representing numbers, in contrast with arithmetic
which was understood as a theory about calculations with concrete numbers. Such an
understanding is often common even nowadays in teaching elementary (secondary school)
algebra.

By modern algebra we in present times mainly mean the theory about algebraic struc-
tures, about polynomials and algebraic equations, and about linear algebra. This textbook
introduces future teachers of mathematics at the bachelor level of their university stud-
ies to some of the basic concepts, results and examples concerning the classical algebraic
structures (groups, rings, integral domains and fields), then to polynomials and algebraic
equations, and finally to linear algebra.

Part I concerning basic algebraic structures has thirteen chapters, starting with the
residue classes of integers which are often used as a fundamental example of an algebraic
structure throughout this textbook. The subsequent eight chapters are devoted to concepts,
results and examples concerning groups and culminate in the classification of all finite
groups of orders 1 to 15. The next three chapters are devoted to rings, integral domains
and fields, and the final chapter of Part I deals with common equivalent and non-equivalent
adjustments when solving algebraic equations over integral domains in school practice.

Part II focusing on polynomial algebra has the first eight chapters devoted to concepts,
results and examples concerning polynomials and polynomial functions. Its other four
chapters deal with methods of solving certain basic types of algebraic (polynomial) equa-
tions over the school fields Q,R,C of rational, real and complex numbers, respectively and
over the field Zp of residue classes of integers modulo p where p is a prime number.

Part III concerning linear algebra has the first four chapters devoted to basic methods
in solving systems of linear equations over the fields Q,R,C and Zp. It starts with matrices
and elementary row operations on them as a fundamental tool used throughout the whole
exposition. The subsequent six chapters study the algebraic structure of the set of solutions
of these systems of equations and are devoted to basic concepts, results and examples
concerning vector spaces over abstract fields F (where, however, the students can always
think of the school fields Q,R,C and of the field Zp). Our aim here is to show the future
teacher of mathematics a one-to-one correspondence between matrices, systems of linear
equations, certain subspaces of finite-dimensional vector spaces and linear maps between
these subspaces. In our final chapter we show that n-dimensional Euclidean vector spaces
over the field R are algebraically indistinguishable from the well-known spaces Rn of n-
tuples of real numbers.

We have aimed at achieving a transparent structure of the texbook. Items such as
definitions, lemmas, propositions, theorems, corollaries and examples are numbered as x.y,
where x is the number of chapter and y is the ‘ordering’ number of the item in the chapter.
For example, when referring to Definition ?? (of a group) it is possible to find the required
definition quickly as item number 17 in Chapter 2.

Our exposition is in each of its three parts illustrated with a great number of examples.
The end of each example is marked with the symbol �, while the end of each proof is denoted
by the traditional symbol �. Since our text has been edited in AMS–LATEX, we added an
Index at the end that should enable the students to search where in the text particular
concepts and results were first presented. The symbol := denotes the defining equality
(meaning that the concept placed on its left is defined via the concepts or formulas on its
right). To define a new concept outside the formal definition environment or to emphasize
certain words (as we do already throughout the Preface and the Introduction), we use the
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traditional font italic. To highlight an important concept inside a definition we often use
the font boldface. Everywhere in the text expressions like 3√2 denote the real cube root
of 2. The composition of maps is generally written in our text as (f ◦ g)(x) = f(g(x)), thus
differing, for example, from [6].

In certain parts we present historical notes in footnotes which should give future teachers
of mathematics a historical perspective of the development of algebra, or encourage them
to study the history of algebra in more detail.



Part II

Polynomial algebra
Working with ‘polynomial expressions’ of the form

a0 + a1x+ · · ·+ anx
n

is common already at primary and secondary schools. There such a poly-
nomial is viewed as a function or as a certain ‘algebraic expression’, and a
proper understanding of this second meaning is usually not achieved.
In Part II of this textbook we present a basic theory of Polynomial al-

gebra. We introduce polynomials in one indeterminate as purely algebraic
expressions and we introduce the corresponding polynomial functions of one
variable. The difference between them should become understandable as well
as the contexts in which both can be algebraically identified - via the con-
cept of a ‘ring isomorphism’ introduced in the previous part of the textbook.
Among those contexts where both can be considered the same are exactly the
‘school’ contexts where rings of polynomials and of polynomial functions are
considered over the fields of rational, real or complex numbers, and thus are
necessarily isomorphic.

In this part of the textbook we deal mainly with divisibility of polynomi-
als, their decompositions, with roots of polynomial functions, and finally in
more detail with algebraic (polynomial) equations, for which a brief intro-
duction has already been given in the last chapter of Part I. One chapter
of our exposition of polynomial algebra is devoted to polynomials in several
indeterminates resp. polynomial functions of several variables. Part II of the
textbook is based on the lecture notes [7].

14 Polynomials in one indeterminate

We already know that the subring 〈M〉 of a ring A′ generated by a non-empty
set M is the intersection of all subrings of A′ which contain the set M . So it
is the smallest (with respect to set inclusion) subring of A′ containing M .

To present the construction of a ring of polynomials in one indeterminate we
shall study the subring 〈A∪{t}〉 of a ring A′ generated by the setM = A∪{t},
where A is a subring of A′ and t ∈ A′ \ A is a selected element of A′. We
remark here that the subring 〈A ∪ {t}〉 is usually denoted by A[t] in the
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literature, and we introduce this more concise notation immediately after
the forthcoming Theorem 14.2. We also wish to point out that all our rings
considered here will be assumed to be commutative rings with unit such as
the ‘school’ rings Z,Q,R,C and the ring of residue classes Zm.

Example 14.1. We show that the set

A =
{
a+ b

3
√

2 + c
3
√

4 | a, b, c ∈ Z
}

is a subring of the ring R generated by the set M = Z ∪
{

3
√

2
}
. We recall

that here and elsewhere in our text, expressions like 3
√

2 and 3
√

4 denote the
real cube roots of 2 and 4.
First note that the set A is a subring of the ring R (details should be verified

as an exercise).
(a) If t ∈ Z, then t ∈ A as

t = t+ 0 · 3
√

2 + 0 · 3
√

4.

Since
3
√

2 = 0 + 1 · 3
√

2 + 0 · 3
√

4,

also 3
√

2 ∈ A. From this it follows that the subring A contains the set Z ∪{
3
√

2
}
, and thus 〈

Z ∪
{

3
√

2
}〉
⊆ A.

(b) Let t ∈ A be an arbitrary element. Then there exist a, b, c ∈ Z such
that t = a + b 3

√
2 + c 3

√
4. Because a, b, c, 3

√
2, 3
√

2 · 3
√

2 = 3
√

4 are elements of
the ring

〈
Z ∪

{
3
√

2
}〉

, we also have

a+ b
3
√

2 + c
3
√

4 ∈
〈
Z ∪

{
3
√

2
}〉

,

whence
A ⊆

〈
Z ∪

{
3
√

2
}〉

.

From (a) and (b) it follows that

A =
〈
Z ∪

{
3
√

2
}〉

.

�

By an approach similar to that presented in the given example we shall
prove the following statement.
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Theorem 14.2. Let (A′,+, ·) be a commutative ring with unit and let (A,+, ·)
be a subring which contains the unit. If t ∈ A′ \A, then

〈A ∪ {t}〉 = {a0 + a1t+ · · ·+ ant
n | a0, a1, . . . , an ∈ A, n ∈ N}.

Proof. Let

B := {a0 + a1t+ · · ·+ ant
n | a0, a1, . . . , an ∈ A, n ∈ N}.

The set B is closed under the operations of subtraction and multiplication
(verify this in detail), hence (B,+, ·) is a subring of the ring (A′,+, ·).
Because A∪{t} ⊆ B (again, verify details of this) and the subring 〈A∪{t}〉

is the smallest of all subrings containing the set A ∪ {t}, we have

〈A ∪ {t}〉 ⊆ B.

If b ∈ B, then there exist a0, a1, . . . , an ∈ A and n ∈ N such that

b = a0 + a1t+ · · ·+ ant
n.

Since a0, a1, . . . , an, t ∈ 〈A ∪ {t}〉, also b ∈ 〈A ∪ {t}〉, from which it follows
that B ⊆ 〈A ∪ {t}〉. Therefore 〈A ∪ {t}〉 = B.

Definition 14.3. We say that the ring 〈A∪{t}〉 arises by adjunction of the
element t ∈ A′ \A to the ring A. It will be denoted by A[t] and its elements
will be denoted by a(t), b(t), f(t), etc.

Example 14.4. Consider the elements 1 + 2i2 + 3i4 and 3 + i2, where i ∈ C
is the imaginary unit. These elements are, by Theorem 14.2, the elements of
the ring Z[i] and it can easily be seen that they represent the same element,
that is, 1 + 2i2 + 3i4 = 3 + i2. Further, putting t = i in the expression
a(t) = −2 + x2 + 3x4 gives a(i) = 0. Notice that in the ring Z[i] one can
express an element via several ways and that an equation of the form a0 +
a1i + . . . ani

n = 0 can hold even when the coefficients a0, a1, . . . , an are not
all zero. In our case we have a0 = −2, a1 = 0, a2 = 1, a3 = 0, a4 = 3. �

We already know that every element a(t) of a ring A[t] can be written in
the form

a(t) = a0 + a1t+ · · ·+ ant
n, (29)

where a0, a1, . . . , an ∈ A, n ∈ N. We now distinguish two important cases.
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Definition 14.5. If, for some element a(t) ∈ A[t], an equation a(t) = 0A
holds if and only if a0 = a1 = · · · = an = 0A, we say that the element
t is a transcendental element over the ring A. If there is an element
a(t) ∈ A[t] of the form (29) for which a(t) = 0A and at least one of the
elements a0, a1, . . . , an is non-zero, we say that t is an algebraic element
over the ring A. Algebraic elements over the rings Z and Q are also called
algebraic numbers.

It is worth noting here that algebraic over Z and algebraic over Q are
equivalent.

Example 14.6. We show that the number
√

3−
√

2 is an algebraic number.
Let us denote t =

√
3−
√

2. Then t2 = 5−2
√

6. This gives us t2−5 = −2
√

6.
After squaring this and further adjustment we get t4 − 10t2 + 1 = 0, hence

(
√

3−
√

2)4 − 10(
√

3−
√

2)2 + 1 = 0.

This means that
√

3−
√

2 is an algebraic number. �

The numbers π and e (the base of the natural logarithm) can be shown to
be transcendental over the ring Z.
When considering two algebraic elements t1, t2 over a ring A, the rings

A[t1], A[t2] may not necessarily be isomorphic as shown by the next example.

Example 14.7. We prove that the rings Z[
√

2] and Z[i] are not isomorphic.
The universes of the rings Z[

√
2] and Z[i] are the sets

{a+ b
√

2 | a, b ∈ Z} and {a+ bi | a, b ∈ Z},

respectively (verify this in detail). Suppose, for a contradiction, that there is
an isomorphism f : Z[

√
2] → Z[i]. We know that f(1) = 1. Hence we also

have f(2) = f(1 + 1) = f(1) + f(1) = 1 + 1 = 2. Let f(
√

2) = a + bi where
a, b ∈ Z. Then we have the following equality:

2 = f(2) = f(
√

2 ·
√

2) = f(
√

2) · f(
√

2) = (a+ bi) · (a+ bi) = a2 − b2 + 2abi.

Since 2 is real, it follows that a = 0 or b = 0.
If a = 0, then 2 = −b2, a contradiction. If b = 0, then 2 = a2, which again

is a contradiction (there is no integer whose square is 2).
Hence there is no isomorphism of the ring Z[

√
2] onto the ring Z[i]. �

The proof of the following theorem is an easy exercise and is left to the
reader. We mention that a natural isomorphism to be used is the mapping

f : A[x]→ A[y], f(a0 + a1x+ · · ·+ anx
n) = a0 + a1y + · · ·+ any

n.
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Theorem 14.8. If x, y are transcendental elements over a ring A, then the
rings A[x] and A[y] are isomorphic.

For every ring A (meaning, in our setting, a commutative ring with unit)
there exists a ring A′ ⊇ A and an element t ∈ A′\A, which is a transcendental
element over the ring A. Thus we can always assume the existence of a
transcendental element over an arbitrary ring, and it does not matter how it
is denoted.

Definition 14.9. If x is a transcendental element over a ring A, then the
elements of the ring A[x] are called polynomials (in one indeterminate)
over the ring A and the ring A[x] is thus called the ring of polynomials (in
one indeterminate) over the ring A. If f(x) ∈ A[x], where

f(x) = a0 + a1x+ . . . anx
n, an 6= 0A,

then the elements a0, a1, . . . , an are called the coefficients of the polynomial
f(x). The coefficient an is said to be the leading coefficient and the number
n is the degree of the polynomial f(x). If the degree of the polynomial is
n, then we write deg f(x) = n. The degree of the zero polynomial is defined
as deg 0 = −∞. Every non-zero element a of the ring A is a polynomial of
degree deg a = 0.

The definition of polynomials in one indeterminate x over a ring A means
that two polynomials are equal if and only if they have the same degree and
the same coefficients for each power of x.
From the properties of the ring operations it follows that the sum of poly-

nomials

f(x) = a0 + a1x+ · · ·+ arx
r, g(x) = b0 + b1x+ · · ·+ bsx

s, r ≥ s,

is the polynomial

f(x)+g(x) = (a0+b0)+(a1+b1)x+· · ·+(as+bs)xs+as+1x
s+1+· · ·+arxr (S)

and their product is the polynomial

f(x) · g(x) = c0 + c1x+ · · ·+ cr+sx
r+s, (P)

where

ck =
k∑
i=0

aibk−i,
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for k ∈ {0, 1, . . . , r + s}.
By generalising the previous considerations we shall now analogously intro-

duce the ring of polynomials in several indeterminates. Firstly, by a similar
procedure to that used in Theorem 14.2 one can prove the following state-
ment.

Theorem 14.10. Let (A′,+, ·) be a commutative ring with unit and let
(A,+, ·) be a subring which contains the unit. If t1, . . . , tn ∈ A′ \ A, then
the universe of the subring 〈A ∪ {t1, . . . , tn}〉 is the set

{a0t
k01
1 . . . tk0n

n + · · ·+ art
kr1
1 . . . tkrn

n | a0, . . . , ar ∈ A, k01, . . . , krn ∈ N}.

The ring 〈A ∪ {t1, . . . , tn}〉 will be denoted A[t1, . . . , tn] and we shall say
that it arises by adjunction of the elements t1, . . . , tn to the ring A. The
element

a0t
k01
1 . . . tk0n

n + · · ·+ art
kr1
1 . . . tkrn

n (30)

can contain more than one expression aitki1
1 . . . tkin

n with the same n-tuple of
exponents (ki1, . . . , kin). If all ordered n-tuples of exponents in the sum (30)
are pairwise distinct, we say that the sum (30) is written in canonical form.

If for every canonical form of the sum (30) we have

a0t
k01
1 . . . tk0n

n + · · ·+ art
kr1
1 . . . tkrn

n = 0A

if and only if a0 = · · · = ar = 0A, we say that the elements t1, . . . , tn are
algebraically independent over the ring A. If there exists a canonical form
of the sum (30) equal to the zero element and at least one of the elements
a0, . . . , ar is non-zero, we say that the elements t1, . . . , tn are algebraically
dependent over the ring A.

Definition 14.11. Let (A′,+, ·) be a commutative ring with unit and let
(A,+, ·) be a subring containing the unit. Let elements x1, x2, . . . , xn be
algebraically independent over A. The subring 〈A ∪ {x1, . . . , xn}〉 of A′ gen-
erated by the set A ∪ {x1, x2, . . . , xn} is said to be the ring of polynomi-
als in indeterminates x1, x2, . . . , xn over the ring A. It is denoted by
A[x1, . . . , xn] and its elements are called polynomials in indeterminates
x1, x2, . . . , xn over the ring A.

We shall deal with various aspects of polynomial algebra in more detail in
the subsequent chapters.
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Exercises.

Exercise 14.1. Prove that

(a) Q
[√

8
]

= Q
[√

2
]
;

(b) Z
[√

8
]
6= Z

[√
2
]
;

(c) Q
[
1 +
√

3
]

= Q
[
1−
√

3
]
.

Exercise 14.2. Prove that

(a) Q
[
i+
√

2
]

= Q
[
i,
√

2
]
;

(b) Q
[√

2 +
√

3
]

= Q
[√

2,
√

3
]
.

Exercise 14.3. Prove that

(a) Q
[√

3
]

=
{
a+ b

√
3 | a, b ∈ Q

}
;

(b) Q
[√

2 +
√

3
]

=
{
a+ b

√
2 + c

√
3 + d

√
6 | a, b, c, d ∈ Q

}
;

(c) Q
[

3
√
−3
]

=
{
a+ b 3

√
−3 + c 3

√
9 | a, b, c ∈ Q

}
;

(d) Q
[
i+
√

2
]

=
{
a+ b

√
2 + ci+ di

√
2 | a, b, c, d ∈ Q

}
.

Exercise 14.4. Prove that

(a) Q ⊂ Q [i ] ⊂ Q
[
i+
√

2
]
;

(b) Q ⊂ Q
[√

6
]
⊂ Q

[√
2,
√

3
]
.

Exercise 14.5. Prove that neither

Q
[√

2
]
⊆ Q

[√
6
]

nor
Q
[√

6
]
⊆ Q

[√
2
]
.

Exercise 14.6. Prove that the following numbers are algebraic:
(a)
√

5 + 1; (b) 2− 3i; (c)
√

3−
√

2; (d)
√

2 +
√

2; (e)
√

3 + 1√
3 ;

(f)
√

5 + 4
√

5.

Exercise 14.7. Determine the universe of the ring Q
[

4
√

2
]
.

Exercise 14.8. Find out whether the rings Q[
√

2] and Q[
√

3] are isomorphic.
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15 Polynomial functions of one variable

From now on we shall mostly deal with the ring A[x] of polynomials in one
indeterminate x over a ring A such that the ring A happens to be a field: the
reader should imagine the ‘school’ fields Q,R,C and the field Zp of residue
classes for a prime p. If all coefficients of a polynomial f(x) are integers, we
often say that f(x) is a polynomial with integer coefficients. We similarly talk
about polynomials with rational, real or complex coefficients. (If a polynomial
is given without specifying the field, yet the coefficients are numbers, we
consider it to be a polynomial over a suitable field of numbers.)
If a polynomial f(x) is written in the form

f(x) = a0 + a1 · x+ · · ·+ an · xn,

for a0, a1, . . . , an ∈ A, an 6= 0A, n ∈ N and each power xi occurs at most
once, we say that the polynomial f(x) is presented in its normal form. A
polynomial f(x) in this form whose leading coefficient is an = 1 is said to be
a monic (or normed) polynomial.
The properties of the sum and product of polynomials given in the previous

chapter by (S) and (P) yield the following statement (verify it in details).

Lemma 15.1. Let A be an integral domain and let f(x), g(x) ∈ A[x]. Then

(a) deg(f(x) + g(x)) ≤ max(deg f(x),deg g(x));

(b) if deg f(x) ≥ 0, deg g(x) ≥ 0, then

deg(f(x) · g(x)) = deg f(x) + deg g(x).

Theorem 15.2.

(i) If A is an integral domain, then also A[x] is an integral domain.

(ii) If F is a field, then F[x] is an integral domain but it is not a field.

Proof. (i) Let f(x), g(x) ∈ A[x] and f(x) 6= 0, g(x) 6= 0, i.e. deg f(x) ≥ 0 and
deg g(x) ≥ 0. Then, by Lemma 15.1, deg(f(x) · g(x)) ≥ 0, so f(x) · g(x) 6= 0,
which means that A[x] is an integral domain.

(ii) Every field F is an integral domain and from (i) it then follows that F[x]
is an integral domain. It is clear that F[x] is not a field because in F[x] only
polynomials f(x) = a0 of degree 0 have inverse elements (f(x))−1 = a0

−1

(a0 ∈ F \ {0F}).
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Definition 15.3. Let F be a field. By a polynomial function (of one
variable) over the field F we mean a function f : F → F for which there
exist n ∈ N and a0, a1, . . . , an ∈ F such that

(∀x ∈ F) f(x) = a0 + a1x+ · · ·+ anx
n.

The set of all polynomial functions (of one variable) over the field F is denoted
by the symbol F〈x〉.

Obviously, two polynomial functions f, g ∈ F〈x〉 are equal if and only if

(∀t ∈ F) f(t) = g(t).

In order to distinguish the set of all polynomial functions of one variable x
over a field F from the set of all polynomials in one indeterminate x over F,
we deliberately introduced the symbol F〈x〉 for the former set to distinguish
it from the symbol F[x] for the latter set. Also to distinguish the notation
from the symbols f(x) used for polynomials, polynomial functions will be
denoted simply by symbols f, g, h, etc. without usually writing the symbols
for their variables. The symbol f(t) will denote the value of the function f
at the element t. We remark that a value f(t) at the element t can only be
given for a polynomial function f by substituting t for its variable while in a
polynomial f(x) the symbol x stands for an indeterminate (a transcendental
element) and thus no substitutions for x in polynomials f(x) are possible! We
hope the student or other reader would become well aware of this distinction
between a polynomial function f ∈ F〈x〉 and a polynomial f(x) ∈ F[x].
At secondary school (and this might rarely happen also here, for example,

in exercises), the polynomials in one indeterminate x and the polynomial
functions of one variable x are often given via the same looking ‘polynomial
expressions’. It should then be the (sometimes uneasy) role of the student
or other reader to recognize from the context whether they are really meant
only to be purely algebraic expressions (i.e. polynomials) or whether they
are intended as polynomial functions.
To make the relationship and the distinction between the polynomials in

one indeterminate and the polynomial functions of one variable more precise
and understandable, we assign here to each polynomial f(x) in one indeter-
minate x a unique polynomial function of one variable x as follows: if

f(x) = a0 + a1x+ · · ·+ anx
n ∈ F[x],

then the mapping
ψ : F[x]→ F〈x〉
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has in F 〈x〉 the value ψ(f(x)) = f : F→ F such that

f : t ∈ F 7→ f(t) = a0 + a1t+ · · ·+ ant
n ∈ F.

The mapping ψ : F[x] → F〈x〉 is surjective by the way that polynomial
functions are defined (i.e. as functions given by a ‘polynomial rule’). However,
ψ is not injective in general. We illustrate this in the following example where
the field F is finite.

Example 15.4. Let F = Z3 and let f(x) = x3 + x2, g(x) = x2 + x ∈ Z3[x].
We obviously have f(x) 6= g(x) in Z3[x], but notice that ψ(f(x)) = ψ(g(x))
in F〈x〉 because f(0) = g(0) = 0, f(1) = g(1) = 2 and f(2) = g(2) = 0.

So x3 + x2 and x2 + x understood as polynomials in one indeterminate x
over the field Z3 are different. However if x3 + x2 and x2 + x are understood
as polynomial functions of one variable x over the field Z3, then they are
equal. �

The sum f+g and the product f ·g of polynomial functions f, g are defined
in the usual ‘pointwise’ manner as for all functions:

(∀t ∈ F) (f + g)(t) := f(t) + g(t) & (f · g)(t) := f(t) · g(t). (31)

Let f(x) = a0 + a1x+ · · ·+ arx
r, g(x) = b0 + b1x+ · · ·+ · · ·+ bsx

s, r ≥ s.
Then

ψ(f(x) + g(x)) =ψ((a0 + b0) + · · ·+ (as + bs)xs + as+1x
s+1 + · · ·+ arx

r)
=(a0 + b0) + · · ·+ (as + bs)xs + as+1x

s+1 + · · ·+ arx
r,

ψ(f(x)) + ψ(g(x)) =(a0 + · · ·+ arx
r) + (b0 + · · ·+ bsx

s).

One can easily verify (using the commutativity of the operations in F and
the distributivity of · with respect to +) that for every t ∈ F,

(a0+b0)+· · ·+(as+bs)ts+as+1t
s+1+· · ·+artr = (a0+· · ·+artr)+(b0+· · ·+bsts),

from which it follows that

ψ(f(x) + g(x)) = ψ(f(x)) + ψ(g(x)). (32)

Analogously one can show that

ψ(f(x) · g(x)) = ψ(f(x)) · ψ(g(x)). (33)

We see that the polynomial functions of one variable can be added and multi-
plied just like the polynomials in one indeterminate, that is, via the rules (S)
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for the sum and (P) for the product. However, their addition and multipli-
cation just as functions via the ‘pointwise rule definition’ (31) is often more
useful and simpler.
We leave the details of the proof of the following statement for the reader.

Theorem 15.5. The set F〈x〉 of the polynomial functions of one variable x
over a field F equipped with the operations of addition and multiplication of
polynomial functions given by the ‘pointwise’ rule (31) is a commutative ring
with the zero element f ≡ 0 (the constant function equal to zero) and with
the unit element g ≡ 1 (the constant function equal to one).

We remark that this theorem in ring theory also follows from the equations
(32) and (33) above which say that the mapping ψ : F[x] → F〈x〉 is what is
called a ring homomorphism; since it is surjective, ψ is even what is called a
ring epimorphism.

We also note that we show later, in Corollary 18.6, that what Example 15.4
illustrates over a finite field F cannot happen over an infinite field F, where
the mapping ψ : F[x]→ F〈x〉 is always injective! Hence over an infinite field
F the ring epimorphism ψ : F[x] → F〈x〉 becomes an isomorphism, meaning
that the ring F[x] of polynomials in one indeterminate x and the ring F〈x〉 of
the polynomial functions of one variable x are algebraically indistinguishable.

Our last example shows that the finite field Z2 has the property that all
its unary functions can be represented as polynomial functions. This prop-
erty has been called 1-functional completeness in a modern research field of
Universal Algebra and this property and its generalisations for general (uni-
versal) algebras have been extensively studied (also by the first author of this
textbook) during the last decades.

Example 15.6. Let F = Z2. If we denote

f0(x) = 0, f1(x) = 1, f2(x) = x, f3(x) = x+ 1,

then Z2〈x〉 = {f0, f1, f2, f3} = Z2
Z2 . Verify it in detail (Exercise 15.5). �

We remark that the observation presented in the previous example can be
nicely generalised as follows.1

Example 15.7. A simple counting argument shows that if F is any finite
field, then every function f : F → F is a polynomial function (of degree less
than q := |F |).

1We are indebted to prof. G. Jones for this example.
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There are clearly qq functions f ∈ FF. Notice there are also qq polynomials

f(x) = a0 + a1x+ · · ·+ aq−1x
q−1 (a0, a1, . . . , aq−1 ∈ F).

These polynomials f(x) ∈ F[x] induce (determine) mutually distinct functions
f : F→ F: for otherwise, f = f ′ for f(x) = a0 +a1x+ · · ·+aq−1x

q−1, f ′(x) =
a0
′+a1

′x+ · · ·+aq−1
′xq−1 would mean that f(t) = f ′(t) for all t ∈ F, whence

0 = (f − f ′)(t) = (a0 − a0
′) + (a1 − a1

′)t+ · · ·+ (aq−1 − aq−1
′)tq−1

for all t ∈ F. However, a polynomial function f − f ′ ∈ F〈x〉 of degree less
than q cannot have q roots. (The last claim will be proved in Theorem 18.5.)
�

Exercises.

Exercise 15.1. Write the polynomial

f(x) = (2x+ i
√

3)2(3x− i
√

2)2 − (2x− i
√

3)2(3x+ i
√

2)2

in one indeterminate x over the field C in its monic (normal) form.

Exercise 15.2. Find polynomial functions f, g ∈ C〈x〉 of the least possible
degrees such that

(a) f(−1) = 6, f(0) = 5, f(1) = 4, f(2) = 9;

(b) g(0) = 1− i, g(1 + i) = 1 + i, g(1− i) = 3− i.

Exercise 15.3. Find out which of the following polynomial functions of
one variable over the field Z3 are equal: f1(x) = x2 + x, f2(x) = x3 + x2,
f3(x) = x4 + 2x+ 2, f4(x) = 1, f5(x) = x4 + 2x3 +x+ 2, f6(x) = x3 + 2x+ 1.

Exercise 15.4. Let f(x) = 3x4+5x3+2x2+3x+4, g(x) = 2x3+5x2+x+2
be polynomials. Find the sum f(x)+g(x) and the product f(x) ·g(x) in cases
where f(x), g(x) belong to: (a) R[x], (b) Z7[x], (c) Z6[x].

Exercise 15.5. Show that each mapping f : Z2 → Z2 is a polynomial
function.

Exercise 15.6. Write down all polynomials of the ring Z2[x] of degree at
most three. How many polynomials of degree at most k (k ∈ N+) can exist?
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16 Divisibility of polynomials

In this chapter we study the divisibility of polynomials in one indeterminate
over a field F. Many of the statements we present here and their proofs are
analogous to those concerning the divisibility of integers. We start with the
fundamental theorem regarding the divisibility of polynomials with remain-
der.

Theorem 16.1. Let F be a field, f(x), g(x) ∈ F[x], g(x) 6= 0. Then there is
a unique pair of polynomials q(x) (the quotient) and r(x) (the remainder) in
F[x] such that

f(x) = g(x) · q(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). (34)

Proof. We start with proving the existence of the quotient and the remainder.
If f(x) = 0 or deg f(x) < deg g(x), then q(x) = 0 and r(x) = f(x). Let us
assume now that deg f(x) ≥ deg g(x). We shall proceed by induction on the
degree of the polynomial f(x). Let f(x) = anx

n + · · ·+ a1x+ a0.
(a) If n = 0, then f(x) = a ∈ F, g(x) = b ∈ F (as deg g(x) ≤ deg f(x)).

Then q(x) = a · b−1 and r(x) = 0, so the assertion holds.
(b) Let q(x), r(x) exist in case deg f(x) < n where n ≥ 1 and let g(x) =

bmx
m + · · ·+ b1x+ b0. Let us define the polynomial f1(x) as follows:

f1(x) := f(x)− an · b−1
m · g(x) · xn−m. (35)

Because deg f1(x) < n, by the induction hypothesis there exist polynomials
q1(x), r(x), for which

f1(x) = g(x) · q1(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). (36)

After substituting from (36) into (35) and an adjustment we obtain

f(x) = g(x) · (q1(x) + an · b−1
m · xn−m) + r(x).

If we denote q(x) := q1(x) + an · b−1
m · xn−m, we get the equality (34).

We continue with proving the uniqueness of the quotient and the remainder.
If deg f(x) < deg g(x) or f(x) = 0, then the uniqueness is obvious. Let now
deg f(x) ≥ deg g(x) and let us have two divisions of f(x) by g(x):

f(x) = g(x) · q1(x) + r1(x), where r1(x) = 0 or deg r1(x) < deg g(x) = m,

f(x) = g(x) · q2(x) + r2(x), where r2(x) = 0 or deg r2(x) < deg g(x) = m.
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Then
g(x) · (q1(x)− q2(x)) = r2(x)− r1(x)

where r2(x)− r1(x) = 0 or deg(r2(x)− r1(x)) < m. If q1(x)− q2(x) 6= 0, then
deg(g(x)·(q1(x)−q2(x))) ≥ m, a contradiction. Therefore q1(x) = q2(x), from
which it follows that also r1(x) = r2(x). So both divisions are the same.

The polynomial r(x) in (34) is called the remainder when dividing the
polynomial f(x) by the polynomial g(x), and the polynomial q(x) is called
the quotient.

In a concrete calculation we always find the quotient q(x) for which the
difference f(x) − g(x) · q(x) is the remainder r(x) which is either the zero
polynomial or deg r(x) < deg g(x). In practice in the process of finding q(x)
and r(x) we gradually subtract suitable multiples of the divisor g(x) from
f(x) (notice (35) in the proof of the previous theorem) until the degree of the
difference (the remainder) is less than the degree of the polynomial g(x). To
illustrate it, look at the procedure in the following example.

Example 16.2. Consider the following two polynomials over the field R:

f(x) = 2x5 − 6x4 + 3x3 − 3x2 − 3x+ 2, g(x) = 2x3 + 2x+ 1.

We determine the quotient q(x) and the remainder r(x) when dividing the
polynomial f(x) by the polynomial g(x).

(2x5 −6x4 +3x3 −3x2 −3x +2) : (2x3 + 2x+ 1) = x2 − 3x+ 1
2

−(2x5 +2x3 +x2)

−6x4 +x3 −4x2 −3x +2
−(−6x4 −6x2 −3x)

x3 +2x2 +2

−(x3 +x +1
2)

2x2 −x +3
2

Hence
q(x) = x2 − 3x+ 1

2 , r(x) = 2x2 − x+ 3
2 .
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�

Now we come to the main concept of this chapter.

Definition 16.3. Let f(x), g(x) be polynomials in one indeterminate over
a field F. We say that g(x) divides f(x) (in the ring F[x]) and we write
g(x) | f(x) if there is a polynomial q(x) ∈ F[x] such that f(x) = g(x) · q(x).

We leave it to the reader to verify the following statements (similar to those
for divisibility of integers).

Proposition 16.4. Let F be a field and let f(x), g(x), h(x) ∈ F[x]. Then

(a) 1 | f(x), f(x) | 0 and f(x) | f(x) for all f(x) ∈ F[x];

(b) if h(x) | g(x), g(x) | f(x), then h(x) | f(x);

(c) if h(x) | f(x), h(x) | g(x), then h(x) | u(x) · f(x) + v(x) · g(x) for
arbitrary u(x), v(x) ∈ F[x].

We say that polynomials f(x), g(x) in one indeterminate over a field F are
associate and write f(x) ∼ g(x), if f(x) | g(x) and g(x) | f(x). The next
proposition characterises this property.

Proposition 16.5. Let f(x), g(x) be polynomials in one indeterminate over
a field F. Then f(x) ∼ g(x) if and only if there is a non-zero element c ∈ F
(i.e. a polynomial of zero degree) such that f(x) = c · g(x).

Proof. Let f(x) ∼ g(x). If f(x) = 0, then also g(x) = 0 and 0 = c · 0 for any
c ∈ F\{0F}. Let now f(x) 6= 0. Then (since f(x) ∼ g(x)) g(x) = f(x) ·h1(x),
f(x) = g(x) ·h2(x) for some h1(x), h2(x) ∈ F[x]. After substitution we obtain
f(x) = f(x)·h1(x)·h2(x), which yields (due to the cancellation laws in integral
domains) h1(x) ·h2(x) = 1, which means that deg h1(x) = deg h2(x) = 0, and
thus the polynomials h1(x), h2(x) are elements of the field F.
Conversely, let f(x) = c · g(x) for some c ∈ F \ {0F}. Then g(x) | f(x).

Since c 6= 0F and F is a field, we have c−1 · f(x) = c−1 · c · g(x). Hence
g(x) = c−1 · f(x), which means that also f(x) | g(x).

Example 16.6. The polynomial (−1 + 2i)x2 + (1 + i)x − 2 + 3i and the
polynomial (2 + i)x2 + (1− i)x+ 3 + 2i are associate in C[x] as

(−1 + 2i)x2 + (1 + i)x− 2 + 3i = i · ((2 + i)x2 + (1− i)x+ 3 + 2i).

�
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We are ready to define an important concept of the greatest common divisor
of two polynomials.

Definition 16.7. Let f(x), g(x), d(x) be polynomials in one indeterminate
over a field F. The polynomial d(x) is called the greatest common divisor
of the polynomials f(x), g(x) (in the ring F[x]) if

(a) d(x) | f(x), d(x) | g(x);

(b) if h(x) | f(x), h(x) | g(x) for h(x) ∈ F[x], then h(x) | d(x).

Analogously we define the concept of the least common multiple of two
polynomials.

Definition 16.8. Let f(x), g(x), m(x) be polynomials in one indeterminate
over a field F. The polynomial m(x) is called the least common multiple
of the polynomials f(x), g(x) (in the ring F[x]) if

(a) f(x) | m(x), g(x) | m(x);

(b) if f(x) | h(x), g(x) | h(x) for h(x) ∈ F[x], then m(x) | h(x).

The previous two definitions can be generalised for an arbitrary finite num-
ber of polynomials. The following statement can be interpreted as saying that
the greatest common divisor of polynomials is (up to the identification via
the relation ∼) unique.

Proposition 16.9. Let d(x) ∈ F[x] be the greatest common divisor of poly-
nomials f(x), g(x) ∈ F[x]. Then h(x) ∈ F[x] is the greatest common divisor
of the polynomials f(x), g(x) if and only if d(x) ∼ h(x).

Proof. Let h(x) be (an another) greatest common divisor of the polynomials
f(x), g(x). Then since the greatest common divisor is a divisor, we have
d(x) | h(x), h(x) | d(x), whence d(x) ∼ h(x).
Conversely, let d(x) ∼ h(x). Then h(x) | f(x), h(x) | g(x) (as h(x) | d(x)

and d(x) | f(x), d(x) | g(x)), thus the condition (a) from Definition 16.7 is
satisfied.
Let now q(x) | f(x), q(x) | g(x) for q(x) ∈ F[x]. Then q(x) | d(x) and since

d(x) ∼ h(x), also q(x) | h(x). Hence the condition (b) from Definition 16.7 is
satisfied, too.

Obviously, an arbitrary non-zero polynomial g(x) = bnx
n + · · · + a0 is

associate with exactly one monic polynomial b−1
n · g(x). So if polynomials

f(x) and g(x) of degree n with respective leading coefficients an and bn are
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associate, then a−1
n ·f(x) = b−1

n ·g(x). Often polynomials which are associate
are identified and instead of the symbol ∼ is simply used the equality symbol
=.
The greatest common divisor d(x) of polynomials f(x), g(x) is usually

denoted by d(x) = gcd(f(x), g(x)), hence this symbol denotes any of the
greatest common divisors of the polynomials f(x), g(x). By the symbol
(f(x), g(x)) we shall denote the monic greatest common divisor of the poly-
nomials f(x), g(x). If (f(x), g(x)) = 1, we shall say that the polynomials
f(x), g(x) are coprime.
When searching for the greatest common divisor of polynomials, the fol-

lowing two lemmas prove useful. Their proofs are left for the reader as an
easy exercise.

Lemma 16.10. Let f(x), g(x) be polynomials in one indeterminate over a
field F and let a, b ∈ F \ {0F}. Then

(a) gcd(f(x), g(x)) ∼ gcd(a · f(x), b · g(x)), whence
(f(x), g(x)) = (a · f(x), b · g(x)));

(b) gcd(f(x), a) ∼ a ∼ 1, so (f(x), a) = 1.

Lemma 16.11. If f(x) = g(x) · q(x) + r(x) for some q(x), r(x) ∈ F[x], then

gcd(f(x), g(x)) ∼ gcd(g(x), r(x)), so (f(x), g(x)) = (g(x), r(x))).

To calculate the greatest common divisor of two polynomials, there is a
method called Euclid’s algorithm since it mimics the Euclid ancient method
of finding the greatest common divisor of two non-zero integers. We shall
now describe this method.
Let f(x), g(x) be non-zero polynomials in one indeterminate over a field F.

Then, by Theorem 16.1, there exists a unique pair of polynomials q1(x), r1(x)
over F (resulting from the first division) such that

f(x) = g(x) · q1(x) + r1(x), where r1(x) = 0 or deg r1(x) < deg g(x).

If r1(x) 6= 0 then analogously there is a unique pair of polynomials q2(x), r2(x)
over F (resulting from the second division) such that

g(x) = r1(x) · q2(x) + r2(x), where r2(x) = 0 or deg r2(x) < deg r1(x).

We can proceed like this further. Because the numbers

deg g(x), deg r1(x), deg r2(x), . . .
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form a decreasing sequence of non-negative integers, after finitely many steps
of our procedure some remainder, let us denote it rn(x), must become zero.
Hence we have the following system of equations:

f(x) = g(x) · q1(x) + r1(x), deg r1(x) < deg g(x),
g(x) = r1(x) · q2(x) + r2(x), deg r2(x) < deg r1(x),
r1(x) = r2(x) · q3(x) + r3(x), deg r3(x) < deg r2(x),

...
...

rn−3(x) = rn−2(x) · qn−1(x) + rn−1(x), deg rn−1(x) < deg rn−2(x),
rn−2(x) = rn−1(x) · qn(x).

Since rn−1(x) | rn−2(x), we have gcd(rn−1(x), rn−2(x)) ∼ rn−1(x) and from
Lemma 16.11 we then gradually obtain

gcd(f(x), g(x)) ∼ gcd(g(x), r1(x)) ∼ · · · ∼ gcd(rn−2(x), rn−1(x)) ∼ rn−1(x).

Hence the greatest common divisor of two polynomials is the last non-zero
remainder in the Euclid algorithm.

Theorem 16.12. Let f(x), g(x) be polynomials in one indeterminate over a
field F. Then there are polynomials u(x), v(x) ∈ F[x] such that

(f(x), g(x)) = u(x) · f(x) + v(x) · g(x).

Proof. In case f(x) = 0 or g(x) = 0 the validity of the statement is obvious.
So let now f(x), g(x) be non-zero polynomials. We proceed by induction on
the number of steps in the Euclid algorithm necessary for the calculation of
the greatest common divisor of the polynomials f(x), g(x).
1. If only one step is needed, then f(x) = g(x) · q(x) for some q(x) ∈ F[x]

and then (f(x), g(x)) = c · g(x) = 0 · f(x) + c · g(x), where c ∈ F is such an
element that c · g(x) is a monic polynomial.
2. Let n > 1 and let us assume that whenever n − 1 steps are needed,

then the statement is true. Let for f(x), g(x) now n steps be necessary. By
Theorem 16.1 we have

f(x) = g(x) · q(x) + r(x), where deg r(x) < deg g(x)

and by Lemma 16.11 then (f(x), g(x)) = (g(x), r(x)), where for the calcu-
lation of (g(x), r(x)) only n − 1 steps are needed. Hence by the induction
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hypothesis we have (g(x), r(x)) = v1(x) · g(x) + u1(x) · r(x). Now by substi-
tuting for r(x) we get

(f(x), g(x)) =(g(x), r(x)) = v1(x)g(x) + u1(x)(f(x)− g(x)q(x)) =
=u1(x)f(x) + (v1(x)− u1(x)q(x))g(x) = u(x)f(x) + v(x)g(x)

as required where u(x) := u1(x) and v(x) := v1(x)− u1(x) · q(x).

Example 16.13. We illustrate the Euclid algorithm for finding the greatest
common divisor of two polynomials as well as Theorem 16.12 for the polyno-
mials f(x) = x5 − x2 − x− 1 and g(x) = 2x4 − x3 + 3x2 − x + 1 considered
over the field R.
We shall use the fact that (see Lemma 16.10) the polynomials gcd(f(x), g(x))

and gcd(2f(x), g(x)) are associate.

(2x5 − 2x2 −2x− 2) : (2x4 − x3 + 3x2 − x+ 1) = x+ 1
2

−(2x5 − x4 +3x3 − x2 +x)

+ x4 −3x3 − x2 −3x− 2

− (x4 −1
2x

3 + 3
2x

2 −1
2x+ 1

2)

−5
2x

3 − 5
2x

2 −5
2x−

5
2

Hence the first division in the Euclid algorithm is

2x5−2x2−2x−2 = (2x4−x3+3x2−x+1)·(x+1
2)+(−5

2x
3−5

2x
2−5

2x−
5
2) (*)

with the remainder r1(x) = − 5
2x

3 − 5
2x

2 − 5
2x −

5
2 , and by Lemmas 16.10

and 16.11 we have gcd(f(x), g(x)) ∼ gcd(2f(x), g(x)) ∼ gcd(g(x), r1(x)).
We again use that (see Lemma 16.10) gcd(g(x), r1(x)) ∼ gcd(g(x),− 2

5r1(x)),
where − 2

5r1(x) = x3 + x2 + x+ 1. Thus in the second division we divide the
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polynomial g(x) by the polynomial x3 + x2 + x+ 1.

(2x4 − x3 +3x2 − x +1) : (x3 + x2 + x+ 1) = 2x− 3
−(2x4 + 2x3 +2x2 + 2x)

− 3x3 +x2 − 3x +1
− (−3x3 −3x2 − 3x −3)

4x2 +4

Hence the second division is

2x4 − x3 + 3x2 − x+ 1 = (x3 + x2 + x+ 1) · (2x− 3) + (4x2 + 4) (**)

with the remainder r2(x) = 4x2 +4, and by Lemmas 16.10 and 16.11 we have
gcd(f(x), g(x)) ∼ gcd(g(x), r1(x)) ∼ gcd(g(x),− 2

5r1(x)) ∼ gcd(r1(x), 1
4r2(x)),

where 1
4r2(x) = x2 + 1. Thus in the third division we divide the polynomial

r1(x) by the polynomial x2 + 1.

(x3 +x2 +x +1) : (x2 + 1) = x+ 1
−(x3 +x)

x2 +1
−(x2 +1)

0

Hence the third division is

x3 + x2 + x+ 1 = (x2 + 1) · (x+ 1) + 0 (***)

with the remainder 0, and by Lemmas 16.10 and 16.11 we have

gcd(f(x), g(x)) ∼ gcd(g(x), r1(x)) ∼ gcd(g(x),−2
5r1(x)) ∼

gcd(r1(x), 1
4r2(x)) ∼ gcd(1

4r2(x), 0) ∼ x2 + 1.

Thus the polynomial x2 + 1 as the last non-zero remainder in the Euclid
algorithm is the demanded greatest common divisor of the polynomials f(x)
and g(x).
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Now we illustrate how to express the greatest common divisor of the poly-
nomials f(x) and g(x) in the form presented in Theorem 16.12. We shall
firstly use the division (**) to substitute for the remainder r2(x) = 4x2 + 4
and then we use the division (*) to substitute for the remainder r1(x) =
− 5

2x
3 − 5

2x
2 − 5

2x−
5
2 :

gcd(f(x), g(x)) = x2 + 1

= 1
4 · (4x

2 + 4)

= 1
4 · [2x

4 − x3 + 3x2 − x+ 1− (x3 + x2 + x+ 1) · (2x− 3)]

= 1
4 · [g(x)− 2

5r1(x) · (2x− 3)]

= 1
4 · g(x)− 1

10 [(2x5 − 2x2 − 2x− 2)− g(x) · (x+ 1
2)] · (2x− 3)

= 1
4 · g(x)− 1

102f(x) · (2x− 3) + 1
10g(x) · (x+ 1

2) · (2x− 3)

= (−2
5x+ 3

5) · f(x) + (1
5x

2 − 1
5x+ 1

10) · g(x)

= u(x) · f(x) + v(x) · g(x),

where u(x) = − 2
5x+ 3

5 and v(x) = 1
5x

2 − 1
5x+ 1

10 . �

Exercises.

Exercise 16.1. Find the quotient and the remainder when dividing the poly-
nomial f(x) by the polynomial g(x) over the field C:

(a) f(x) = x4 + x3 − 5x2 + x− 6, g(x) = x3 − 8x2 + x− 8;

(b) f(x) = x3 − 8x2 + x− 7, g(x) = x2 + 1;

(c) f(x) = x5 + 15x2 − 31x+ 15, g(x) = x2 + 2x− 3;

(d) f(x) = x5 + 2ix4 + (3− i)x3 + 2ix2 − 4x− 6i, g(x) = x2 + 2ix− 3;

(e) f(x) = 5x6 + 4x5 + 3x2 + 2x+ 1, g(x) = 7x4 + 2x2 − 3x+ 2.

Exercise 16.2. Find the quotient and the remainder when dividing the poly-
nomial f(x) by the polynomial g(x) over the field Z5:



136 Part II

(a) f(x) = 4x3 + x2 + x+ 3, g(x) = 2x+ 1;

(b) f(x) = x5 + 2x4 + 4x3 + x2 + 2x+ 2, g(x) = 3x3 + 2x+ 1;

(c) f(x) = x5 + 3x3 + 4x2 + 3, g(x) = x3 + 2x2 + 4x+ 1;

(d) f(x) = 4x3 + 4, g(x) = 2x2 + 3x+ 2.

Exercise 16.3. Determine a, b ∈ R such that g(x) | f(x) in the ring R[x]:

(a) f(x) = 6x5 + 11x4 + 5x3 + 5x2 + ax+ b, g(x) = x2 + 1;

(b) f(x) = x3 + 8x2 + 5x+ a, g(x) = x2 + 3x+ b.

Exercise 16.4. Find a, b, c ∈ Z such that the polynomial f(x) is divisible by
the polynomial g(x):

(a) f(x) = x3 + 2x2 + ax− 3, g(x) = x2 + bx+ c;

(b) f(x) = x3 + ax2 + 3x+ b, g(x) = x2 + cx+ 2.

Exercise 16.5. Find gcd(f(x), g(x)) over the field Q:

(a) f(x) = x4 + x3 − 5x2 + x− 6, g(x) = x3 − 8x2 + x− 8;

(b) f(x) = x5 + 1, g(x) = x2 + 1;

(c) f(x) = x4 + x3 − 3x2 − 4x− 1, g(x) = x3 + x2 − x− 1;

(d) f(x) = x6+3x5+3x4+3x3+4x2+6x+4, g(x) = x4+x3−3x2−x+2;

(e) f(x) = x5−2x4 +x3 +7x2−12x+10, g(x) = 3x4−6x3 +5x2 +2x−2.

Exercise 16.6. Find gcd(f(x), g(x)) over the field Z5:

(a) f(x) = x4 + 4x3 + 1, g(x) = x3 + 3x2 + 1;

(b) f(x) = x4 + x3 + 2x2 + x+ 4, g(x) = x3 + x2 + 4x+ 4.

Exercise 16.7. Find a condition for a, b ∈ R such that gcd(f(x), g(x)) is a
polynomial of at least degree 1 provided f(x) = 3x3+3ax+3b, g(x) = 3x2+a.
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17 Decompositions of polynomials

The Fundamental Theorem of Arithmetic says that every n ∈ N,n ≥ 2 can
be decomposed into a product of prime factors and that this decomposition
is unique up to the order of factors. In this chapter we derive an analogue of
this theorem for polynomials in one indeterminate over a field F.

In arithmetic trivial divisors of n ∈ N+ are the number 1 and n itself. The
next definition gives an analogue for polynomials.

Definition 17.1. Let f(x), g(x) be polynomials in one indeterminate over a
field F. The polynomial g(x) is called a trivial divisor of the polynomial
f(x) (in the ring F[x]) if deg g(x) = 0 or g(x) ∼ f(x).

Again, in arithmetic numbers n ∈ N,n ≥ 2 having only trivial divisors
are the prime numbers while numbers having also non-trivial divisors are
compound numbers. Analogues for polynomials are the irreducible and the
reducible polynomials, respectively.

Definition 17.2. Let f(x) be a polynomial in one indeterminate over a field
F of degree at least 1. The polynomial f(x) is said to be irreducible (in the
ring F[x]) if f(x) has in F[x] only trivial divisors. Otherwise f(x) is called a
reducible polynomial (in the ring F[x]).

Hence if a polynomial f(x) is reducible in F[x], there exist polynomials
g(x), q(x) whose degrees are smaller than deg f(x) and f(x) = g(x) · q(x).
The reader will recognize that the next lemma is an analogue of a well-known
statement from arithmetic.

Lemma 17.3. Let p(x), f(x), g(x) be polynomials in one indeterminate over
a field F. If the polynomial p(x) is irreducible and p(x) | f(x) · g(x), then
p(x) | f(x) or p(x) | g(x).

Proof. If p(x) is irreducible , then the greatest common divisor of the polyno-
mials p(x), f(x) is either p(x) or 1. In the first case p(x) | f(x), in the second
case, by Theorem 16.12, 1 = u(x)·p(x)+v(x)·f(x) for some u(x), v(x) ∈ F[x].
After multiplying both sides of this equality by the polynomial g(x) we obtain

g(x) = u(x) · p(x) · g(x) + v(x) · f(x) · g(x),

from which it follows that p(x) | g(x).

Now we present the promised analogue of The Fundamental Theorem of
Arithmetic for polynomials in one indeterminate over a field F.
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Theorem 17.4. Every polynomial f(x) ∈ F[x] of degree at least 1 over a
field F can be decomposed into a product of irreducible polynomials, and this
product is unique up to the order of the factors and their substitution by their
associate polynomials.

Proof. We proceed by induction on the degree n of the polynomial f(x).
1. For n = 1 we have that the polynomial f(x) is irreducible and so its

decomposition is unique.
2. Assume that n ≥ 2 and the statement holds for every polynomial of

degree less than n. Let f(x) be a polynomial of degree n. If it is irreducible,
then f(x) = f(x) is the required ‘decomposition’ of f(x) into irreducible
polynomials. If f(x) is reducible, then there are polynomials h(x), g(x) with
deg h(x) < n, deg g(x) < n such that f(x) = h(x) · g(x). By the induction
hypothesis there are decompositions

h(x) = p1(x) · · · · · pk(x), g(x) = q1(x) · · · · · ql(x),

where pi(x) for i ∈ {1, . . . , k} and qj(x) for j ∈ {1, . . . , l} are irreducible
polynomials. From that we have

f(x) = p1(x) · · · · · pk(x) · q1(x) · · · · · ql(x).

It remains to prove the uniqueness of this decomposition. We again can
proceed by induction on the number of irreducible factors. For one factor the
statement is true. We assume that every polynomial that is the product of
less than n irreducible factors has a unique decomposition (n ≥ 2). Let us
consider the decompositions into irreducible polynomials

p1(x) · · · · · pn−1(x) · pn(x) = f(x) = q1(x) · · · · · qm(x).

The irreducible polynomial pn(x) divides the left-hand side of this equality, so
it divides the right-hand side. Consequently, by Lemma 17.3, it must divide
some of the factors on the right-hand side, e.g. qj(x). Since pn(x), qj(x)
are irreducible, we get pn(x) ∼ qj(x), whence qj(x) = c · pn(x) for some
c ∈ F \ {0F}. After substitution and cancellation we obtain

p1(x) · · · · · pn−1(x) = c · q1(x) · · · · · qj−1(x) · qj+1(x) · · · · · qm(x).

We now can use the induction hypothesis and this completes the proof.

By this theorem, every polynomial f(x) = anx
n+ · · ·+a1x+a0 ∈ F[x] can

be written in a unique (up to the order of the factors and their substitution
by their associate polynomials) form

f(x) = q1(x) · q2(x) · · · · · qm(x), (37)
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where q1(x), . . . , qm(x) are irreducible polynomials. Every polynomial qi(x)
is associate with a unique monic polynomial pi(x), i ∈ {1, . . . ,m}. Hence for
every i ∈ {1, . . . ,m} we have qi(x) = ci · pi(x) where ci ∈ F \ {0F}. After
substituting into (37) we obtain

f(x) = c1 · · · · · cm · p1(x) · · · · · pm(x). (38)

The product of monic polynomials is again a monic polynomial and we have
c1 · · · · · cm = an. This and Theorem 17.4 yield the following statement.

Corollary 17.5. Let f(x) = anx
n + · · · + a1x + a0 be a polynomial of de-

gree at least 1 over a field F. Then there are monic irreducible polynomials
p1(x), . . . , pm(x) such that

f(x) = an · p1(x) · · · · · pm(x). (39)

The decomposition (39) is unique up to the order of the factors.

It is possible that some factors are repeated in the product (39) (i.e. in the
product (37) some factors are associate). In such case the product (39) can
be adjusted and written in the form

f(x) = an · p1(x)α1 · · · · · pr(x)αr , (40)

where p1(x), . . . , pr(x) are pairwise distinct monic irreducible polynomials
and α1, . . . , αr ∈ N+. The form (40) is called the canonical decomposition
of the polynomial f(x) (in the ring F[x]). If we allow zero exponents in the
decomposition (40), then we talk about a generalised decomposition of the
polynomial f(x).
The existence of canonical decompositions of polynomials leads to the fol-

lowing (theoretical) criterion of divisibility of one polynomial by the other.

Theorem 17.6. Let f(x) = a · p1(x)α1 · · · · · pn(x)αn be the canonical decom-
position of a polynomial f(x) over a field F. Then a polynomial g(x) divides
the polynomial f(x) if and only if the polynomial g(x) can be written in the
form

g(x) = b · p1(x)β1 · · · · · pn(x)βn , (41)

where 0 ≤ βi ≤ αi for every i ∈ {1, . . . , n}.

Proof. To show the necessity, assume that g(x) | f(x). Then there is a poly-
nomial h(x) such that f(x) = g(x) · h(x). If the polynomial g(x) contains (in
its decomposition (41)) an irreducible monic factor which is not present in the
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canonical decomposition of the polynomial f(x) or g(x) contains some factor
in a greater power than is present in the canonical decomposition of the poly-
nomial f(x), then this would contradict the uniqueness of the decomposition
of f(x).
Conversely, let g(x) has a decomposition of the form (41). Then

f(x) = a · p1(x)α1 · · · · · pn(x)αn

= a · p1(x)β1+α1−β1 · · · · · pn(x)βn+αn−βn

= a · b · b−1 · p1(x)β1 · · · · · pn(x)βn · p1(x)α1−β1 · · · · · pn(x)αn−βn

= b · p1(x)β1 · · · · · pn(x)βn · a · b−1 · p1(x)α1−β1 · · · · · pn(x)αn−βn

= g(x) · h(x),

where we have denoted h(x) := a · b−1 · p1(x)α1−β1 · · · · · pn(x)αn−βn . Hence
we have g(x) | f(x).

Assume that we know the canonical decompositions of polynomials f(x)
and g(x). (We warn that finding them might sometimes be hard or even
impossible although their existence in theory is guaranteed.) We can then
use Theorem 17.6 for finding their greatest common divisor and their least
common multiple:

Theorem 17.7. Assume that

f(x) = a · p1(x)k1 · · · · · pn(x)kn ,

g(x) = b · p1(x)l1 · · · · · pn(x)ln

are generalised decompositions of polynomials f(x), g(x) over a field F. Then

gcd(f(x), g(x)) = p1(x)r1 · · · · · pn(x)rn , where ri = min(ki, li) (42)

and

lcm(f(x), g(x)) = p1(x)s1 · · · · · pn(x)sn , where si = max(ki, li), (43)

for every i ∈ {1, . . . , n}.

Proof. By Theorem 17.6, the polynomial on the right-hand side of (42) divides
f(x) and g(x), hence condition (a) from Definition 16.7 is satisfied. Let
h(x) | f(x), h(x) | g(x). Then again by Theorem 17.6,

h(x) = a · p1(x)t1 · · · · · pn(x)tn , where 0 ≤ ti ≤ ki and 0 ≤ ti ≤ li
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for every i ∈ {1, . . . , n}. This means that 0 ≤ ti ≤ min(ki, li) = ri, hence
h(x) | p1(x)r1 · · · · · pn(x)rn and so also condition (b) from Definition 16.7 is
satisfied.
One can analogously prove the formula (43).

Example 17.8. Let

f(x) = 2(x− 2)3(x− 1)(x2 + 1), g(x) = (x− 2)2(x+ 1)(x2 + 1)2

be polynomials over the field R. (One can verify that the given decomposi-
tions are canonical.) We shall apply the formulas (42) and (43) to find the
greatest common divisor and the least common multiple of the given polyno-
mials.
First we present the polynomials f(x), g(x) in their ‘uniform’ generalised

forms. We have

f(x) = 2(x− 2)3(x− 1)1(x+ 1)0(x2 + 1),
g(x) = (x− 2)2(x− 1)0(x+ 1)1(x2 + 1)2.

By applying Theorem 17.7 we now obtain

gcd(f(x), g(x)) = (x− 2)2(x− 1)0(x+ 1)0(x2 + 1)1 = (x− 2)2(x2 + 1),
lcm(f(x), g(x)) = (x− 2)3(x− 1)(x+ 1)(x2 + 1)2.

�

Exercises.

Exercise 17.1. Show that the polynomial x2 + 4 is in R[x] irreducible.

Exercise 17.2. Find in R[x] the canonical decomposition of the polynomial:

(a) f(x) = x4 + 1;

(b) g(x) = x4 − x2 + 1.

Exercise 17.3. Using the canonical decompositions find gcd(f(x), g(x)) and
lcm(f(x), g(x)) in R[x] provided f(x) = x3−8, g(x) = x4 +2x3 +3x2−2x−4.

Exercise 17.4. Using the canonical decompositions find gcd(f(x), g(x)) and
lcm(f(x), g(x)) in C[x] provided f(x) = x4 +2x2 +1, g(x) = x2 +(1+ i)x+ i.
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18 Roots of polynomial functions

In this chapter we mainly deal with polynomial functions of one variable over
a field F. We shall denote the zero element 0F of the field F simply 0.

Definition 18.1. Let f ∈ F〈x〉 be a polynomial function of one variable over
a field F. An element c ∈ F is called a root of the polynomial function f
if f(c) = 0.

Each root of a polynomial function f is also called a root of the algebraic
equation f(x) = 0 or a solution of f(x) = 0.

Proposition 18.2. If a field F is finite then the ring F〈x〉 has proper divisors
of zero.

Proof. Let F = {a1, a2, . . . , an}, n ∈ N and let us take the polynomials f(x) =
x− a1 and g(x) = (x− a2)(x− a3) . . . (x− an) in the ring F[x]. Then neither
f = ψ(f(x)) nor g = ψ(g(x)) are zero functions since f(a2) = a2 − a1 6= 0
and g(a1) = (a1 − a2) . . . (a1 − an) 6= 0. But for the polynomial f(x) · g(x) =
(x−a1)(x−a2) . . . (x−an) its corresponding function ψ(f(x)·g(x)) is obviously
the zero function.

The following ‘divisibility criterion’ for an element of a field to be a root
of a given polynomial function is called Bézout Theorem and it will be of a
primary importance within our subsequent study.

Theorem 18.3 (Bézout Theorem). Let f ∈ F〈x〉 for a field F. An element
c ∈ F is a root of the polynomial function f if and only if x− c divides f(x)
in F[x].

Proof. To prove the necessity, let c be a root of f , thus f(c) = 0. By Theo-
rem 16.1, for the polynomials f(x) and x− c in F[x] there exist polynomials
q(x) (the quotient) and r(x) (the remainder) such that

f(x) = (x− c)q(x) + r(x), where r(x) = 0 or deg r(x) < deg(x− c).

We shall show that the case r(x) 6= 0 cannot happen. Indeed, suppose for
contradiction that r(x) 6= 0. Since deg(x− c) = 1 and deg r(x) < deg(x− c),
we get r(x) = z ∈ F \ {0}. By assumption 0 = f(c) = (c− c)q(c) + z = 0 + z,
whence z = 0, a contradiction. Hence indeed for the remainder r(x) we have
r(x) = 0. This implies f(x) = (x− c)q(x), thus x− c | f(x) in F[x].

To prove the sufficiency, let x − c | f(x) in F[x]. Then f(x) = (x − c)q(x)
and f(c) = (0− 0)q(c) = 0, whence c is a root of f .
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The proof of the following statement is easy and thus left for the reader.

Lemma 18.4. Let f(x), g(x), h(x) ∈ F[x] be polynomials over a field F and
let f(x) = g(x)·h(x). Then c is a root of the polynomial function f = ψ(f(x))
if and only if c is a root of the polynomial function g = ψ(g(x)) or c is a root
of the polynomial function h = ψ(h(x)).

The next result is an important consequence of Bézout Theorem 18.3 and
the previous lemma.

Theorem 18.5. Let F be an arbitrary field and let f(x) ∈ F[x] be a poly-
nomial of degree n (n ∈ N). Then the corresponding polynomial function
f ∈ F〈x〉 has in F at most n roots.

Proof. We proceed by induction on the degree n of the polynomial f(x).
1. If n = 0, then f(x) = a0 6= 0 and the corresponding polynomial function

f = ψ(f(x)) has 0 roots. So the statement is true.
2. Assume that the statement is valid for all polynomials f(x) ∈ F[x] of

degrees n− 1 where n ≥ 1. Let f(x) ∈ F[x] be a polynomial of degree n and
let c ∈ F be a root of the corresponding polynomial function f = ψ(f(x)).
Then by Bézout Theorem 18.3, f(x) = (x − c)q(x) in F[x], where q(x) is
a polynomial of degree n − 1. By the induction hypothesis, the polynomial
function q = ψ(q(x)) in F〈x〉 corresponding to q(x) has at most n− 1 roots.
From the previous lemma it follows that the only roots of the polynomial
function f are the element c and the roots of the polynomial function q (and
no other roots). Hence the polynomial function f has at most n roots.

The next corollary characterises in (E) the equality of polynomial functions
in F〈x〉 over an infinite field F. It says that over infinite fields, like the ‘school’
fields Q,R and C of rational, real and complex numbers, respectively, two
polynomial functions f and g are equal if and only if their corresponding
polynomials f(x) and g(x) are equal. This means that they must have the
same degree and the same coefficients for each power of x and so they must
look the same. (We recall that, as Example 15.4 showed, the situation is
different over finite fields.)

Corollary 18.6. Let F be an infinite field and let f(x) = a0+a1x+· · ·+arxr,
g(x) = b0 + b1x + · · · + bsx

s be polynomials in one indeterminate over the
field F. Let f = ψ(f(x)) and g = ψ(g(x)) be the polynomial functions in F〈x〉
corresponding to the polynomials f(x) and g(x). Then

f = g in F〈x〉 iff r = s & (∀i ∈ {0, 1, . . . , r}) ai = bi. (E)
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Proof. If r = s and the corresponding coefficients are equal, then obviously
for every t ∈ F we have f(t) = g(t), which means that f = g in F〈x〉.
Conversely, suppose by contradiction that f = g in F〈x〉 but r 6= s or

ai 6= bi for some i. Then f(x)−g(x) is a polynomial of degree n for a suitable
n ∈ N in F[x] and every element of the field F is the root of the corresponding
polynomial function f − g = ψ(f(x) − g(x)) in F〈x〉. Since the field F is
infinite, this contradicts Theorem 18.5.

Hence if F is an infinite field, then Corollary 18.6 yields that the mapping
ψ : F[x]→ F〈x〉 is injective and so in such case the rings F[x] of polynomials
and F〈x〉 of polynomial functions are isomorphic, and so can be algebraically
identified. Therefore over the ‘school’ fields Q, R and C it indeed does not
matter much if at secondary schools teachers and students talk about poly-
nomials in one indeterminate or they talk about polynomial functions of one
variable over these fields.
The calculations of the quotients and remainders when dividing a given

polynomial by a polynomial x− c are usually performed via Horner’s scheme
(or Horner’s method) which is due to William George Horner.1 The
calculations via this scheme are based on the following results.

Proposition 18.7. Let f(x) ∈ F[x] be a polynomial over a field F and let
c ∈ F. Then there exists a polynomial q(x) ∈ F[x] such that

f(x) = (x− c)q(x) + f(c).

Proof. By Theorem 16.1 we have f(x) = (x − c)q(x) + z for some z ∈ F
and a polynomial q(x) ∈ F[x]. For the polynomial function f = ψ(f(x)) in
F〈x〉 corresponding to f(x) we then obtain f(c) = (c − c)q(c) + z, whence
z = f(c).

Corollary 18.8 (Horner’s scheme). Assume that when dividing a polyno-
mial f(x) = anx

n + · · ·+ a0 by a polynomial x− c over a field F (c ∈ F) we
1William George Horner (1786-1837) was a British mathematician. He was a schoolmas-
ter, headmaster and schoolkeeper, proficient in classics as well as mathematics, who
wrote extensively on functional equations, number theory and approximation theory,
but also on optics. His contribution to approximation theory is honoured in the desig-
nation Horner’s method, in particular respect of a paper in Philosophical Transactions
of the Royal Society of London for 1819. The modern invention of the zoetrope, under
the name Daedaleum in 1834, has been attributed to him.

Horner died comparatively young, before the establishment of specialist, regular sci-
entific periodicals. So, the way others have written about him has tended to diverge,
sometimes markedly, from his own prolific, if dispersed, record of publications and the
contemporary reception of them. [14]
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obtain the quotient q(x) = bn−1x
n−1 + · · ·+ b1x+ b0 and the remainder f(c).

Then

bn−1 = an,

bn−2 = an−1 + c · bn−1,

... (H)
b0 = a1 + c · b1,

f(c) = a0 + c · b0.

Proof. By Proposition 18.7, f(x) = (x− c)q(x) + f(c), hence

anx
n+an−1x

n−1 + · · ·+a1x+a0 = (x− c)(bn−1x
n−1 + · · ·+ b1x+ b0) + f(c).

From this by comparing the coefficients we get that

an = bn−1,

an−1 = bn−2 − c · bn−1,

an−2 = bn−3 − c · bn−2,

...
a1 = b0 − c · b1,

a0 = f(c)− c · b0,

and this gives us (H).

Based on this corollary we built Horner’s scheme as follows. Into the first
row we write all (thus also zero) coefficients of the polynomial f(x). Into the
second and the third lines we then gradually write the elements bn−1, c ·bn−1,
bn−2, c · bn−2, bn−3, etc. (see the following table).

an an−1 an−2 . . . a1 a0

c c · bn−1 c · bn−2 . . . c · b1 c · b0

bn−1 bn−2 bn−3 . . . b0 f(c)

Example 18.9. We determine via Horner’s scheme the quotient and the
remainder when dividing the polynomial f(x) = x5 − 3x4 + 2x− 7 by x+ 2.
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In this case we have the root c = −2 of the polynomial function h = ψ(h(x))
corresponding to the polynomial h(x) = x + 2 and so Horner’s scheme has
the form

1 −3 0 0 2 −7

−2 −2 10 −20 40 −84

1 −5 10 −20 42 −91

hence x5−3x4+2x−7 = (x+2)(x4−5x3+10x2−20x+42)−91, f(−2) = −91.
�

Definition 18.10. Let f ∈ F〈x〉 be a polynomial function of degree n ≥ 2
over a field F and k ∈ N+. An element c ∈ F is said to be a k-root of the
polynomial function f if f(x) = (x−c)kg(x) and g(c) 6= 0 for some polynomial
g(x) ∈ F[x] and the polynomial function g = ψ(g(x)) corresponding to the
polynomial g(x).

If k = 1 we usually call the k-root a simple root and if k ≥ 2 then we talk
about a multiple root. For example, if f(x) = (x− i)(x+2)3 then i is a simple
root of f and −2 is a multiple root, more precisely, a 3-root of f .

Definition 18.11. A field F is said to be algebraically closed if every
polynomial function f ∈ F〈x〉 of degree n ≥ 1 has in F at least one root.

The field of rational numbers Q is not algebraically closed because for
instance the polynomial function x2 − 2 has no rational roots. Similarly, the
field of real numbers R is not algebraically closed because for instance the
polynomial function x2 + 1 has no real roots. The question for the field C
of complex numbers is addressed by The Fundamental Theorem of Algebra
which will be presented here without its proof (the proof would require at
least a semester course using complex analysis).

Theorem 18.12 (The Fundamental Theorem of Algebra). The field C
of complex numbers is algebraically closed, that is, every polynomial function
f ∈ C〈x〉 of degree n ≥ 1 has at least one complex root.

Exercises.

Exercise 18.1. Determine via Horner’s scheme the quotient and the remain-
der when dividing the polynomial 2x5 + 3x4 − 13x3 + 31x− 15 by
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(a) x− 1;

(b) x+ 3.

Exercise 18.2. The polynomial function 3x5 − 16x4 + 25x3 − 6x2 − 4x− 8
has a root 2. Determine the greatest k such that 2 is a k-root.

Exercise 18.3. For the polynomial function f(x) = x7 + 2x6 + x4 − 5x3 +
3x2 + 1 determine f(−2) by (a) substitution, (b) Horner’s scheme.

Exercise 18.4. Determine number a such that the polynomial x3 + 2x2 +
ax+24 is divisible by x+3 by (a) Bézout Theorem 18.3, (b) Horner’s scheme.

Exercise 18.5. Determine via Horner’s scheme the quotient and the remain-
der when dividing the polynomial x6 + (2− 2i)x5 + (1 + i)x3 − (1 + i)x2 + 2i
by the polynomial x+ 1− i.

Exercise 18.6. Determine a, b ∈ R such that the polynomial 2x35− 18x33−
5x15 + 45x13 + ax2 + bx− 3 is divisible by x2 − 4x+ 3.

Exercise 18.7. Determine a, b, c ∈ R such that the number −2 is at least a
3-root of the polynomial function x4 + ax3 + bx2 + cx− 24.

19 Polynomial functions with complex, real and integer coef-
ficients

In this chapter we study polynomial functions over the algebraically closed
field C of complex numbers with a particular focus on polynomial functions
with real and integer coefficients. We start with a consequence (in fact, an
equivalent) of The Fundamental Theorem of Algebra.

Theorem 19.1. Let f(x) = anx
n + · · ·+ a1x+ a0 be a polynomial of degree

n ≥ 1 over the field C. There are complex numbers c1, c2, . . . , cn such that

f(x) = an(x− c1)(x− c2) . . . (x− cn). (44)

Hence the corresponding polynomial function f = ψ(f(x)) in C〈x〉 has exactly
n roots c1, c2, . . . , cn in C.

Proof. We proceed by induction on the degree n of f(x).
1. For n = 1 we have f(x) = a1x+ a0 = a1(x+ a0

a1
), hence c1 = −a0

a1
, and

the statement is true.
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2. Let the statement be valid for all polynomials of degree n over the
field C where n ≥ 1 and let f(x) = an+1x

n+1 + anx
n + · · · + a1x + a0 be a

polynomial of degree n+ 1. By The Fundamental Theorem of Algebra 18.12
(notice this is the place where our proof relies heavily on it), the corresponding
polynomial function f = ψ(f(x)) in C〈x〉 has some root c1 ∈ C. Now by
Bézout Theorem 18.3, f(x) = (x − c1)g(x) where g(x) is a polynomial of
degree n with the leading coefficient an+1. By the induction hypothesis,
there are numbers c2, . . . , cn+1 ∈ C such that

g(x) = an+1(x− c2) . . . (x− cn+1).

After substituting from this we obtain

f(x) = an+1(x− c1)(x− c2) . . . (x− cn+1).

as required.
It follows for the corresponding polynomial function f = ψ(f(x)) that

f(c) = 0 if and only if c ∈ {c1, . . . , cn}, hence f has exactly the roots c1, c2,
. . . , cn in C.

The linear (i.e. of degree 1) polynomials x−c1, . . . x−cn are said to be the
root factors of the polynomial f(x) and (44) is called a decomposition into
root factors of the polynomial f(x). Because the linear factors are necessarily
irreducible, the decomposition (44) is unique up to the order of factors. It
can further be adjusted into the form

f(x) = an(x− c1)k1 . . . (x− cr)kr , (45)

where the factors x − c1, . . . , x − cr are pairwise distinct and the exponents
k1, . . . , kr ∈ N+ with k1 + · · · + kr = n. This decomposition is in fact the
canonical decomposition. Also note that if f(x) has the canonical decompo-
sition (45), then c1 is a k1-root of the polynomial function f , etc., cr is a
kr-root of f .
We remark that the theorem above is often presented as a version of the

Fundamental Theorem of Algebra itself since the proof we have just given
shows that it is equivalent to it. We also emphasize that while the theorem
guarantees the existence of n complex roots of each polynomial function of
degree n over the field C of complex numbers, this is far from meaning that
such roots can in practice be calculated.
Here we should come back to and mention again (we did so the first time

in Chapter ??) the two young ‘romantic heroes’ of modern algebra and so of
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the whole modern mathematics, Henrik Abel1 and Évariste Galois2 (For
more details on their lives see for instance a well-written account of their
lives and the influence on modern algebra by M. Ronan [12].) It is due to
them that for general polynomials of degree n ≥ 5 over a field C there is
no formula expressing the roots of the corresponding polynomial functions
from their coefficients by using the basic arithmetic operations of addition,
subtraction, multiplication, division and the nth roots (n ≥ 2) such as the
quadratic formula is widely known for expressing this way (we say, in radicals)
the roots of polynomial functions of degree 2. The theory showing that there
is no algorithm for determining the roots for general polynomial functions of
degree n ≥ 5 over a field C, Galois theory, is one of the most beautiful
parts of mathematics. The reader is strongly encouraged to become familiar
with it, for example, via the famous book A survey of modern algebra by G.
Birkhoff and S. Mac Lane [2].
The following statement is now an immediate corollary of the previous the-

orem (and yet another equivalent of The Fundamental Theorem of Algebra).

Corollary 19.2. Every polynomial function f of degree n ≥ 1 with complex
coefficients has exactly n roots in the field C of complex numbers (where each
k-root is counted k times).

For polynomial functions with real coefficients the following result is of
primary importance.

1Niels Henrik Abel (1802-1829) was a Norwegian mathematician who made pioneering
contributions in several fields of mathematics. His most important result is the first
complete proof demonstrating the impossibility of solving the general quintic equation
in radicals. This question was one of the most famous open problems of his day, and had
been unresolved for 250 years. He was also an innovator in the field of elliptic functions,
namely a discoverer of so-called Abelian functions. Despite his great achievements,
Abel was largely unrecognized during his lifetime; he made his discoveries while living
in poverty and died at the age of 26.

Most of his work was done in six or seven years of his working life. Regarding
Abel, the French mathematician Charles Hermite said: “Abel has left mathematicians
enough to keep them busy for five hundred years.” Another French mathematician,
Adrien-Marie Legendre, said: “quelle tete celle du jeune Norvégien!” (“what a head the
young Norwegian has!”) [14]

2Évariste Galois (1811-1832) was a French mathematician born in Bourg-la-Reine. While
still in his teens, he was able to determine a necessary and sufficient condition for a
polynomial to be solvable by radicals, thereby solving a problem standing for hundreds
years. His work laid the foundations for what is called today Galois theory and for
the group theory, two major branches of abstract algebra, and the subfield of Galois
connections. He died at age 20 from wounds suffered in a duel. [14]
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Theorem 19.3. If a polynomial function f ∈ R〈x〉 with real coefficients has
a k-root c = a + bi, then it also has a k-root c = a − bi which is a complex
conjugate to c.

Proof. (a) We firstly prove that if a polynomial function f(x) = anx
n+· · ·+a0

with real coefficients has a root a+bi, then it also has the root a−bi. We shall
use that for arbitrary complex numbers c1, c2, . . . , cn the following formulas
hold (verify them in detail):

c1 + c2 + · · ·+ cn = c1 + c2 + · · ·+ cn,

c1 · c2 · · · · · cn = c1 · c2 · · · · · cn.

Let a+ bi be a root of the polynomial f(x) i.e. f(a+ bi) = 0. Then

f(a+ bi) = an(a+ bi)n + · · ·+ a1(a+ bi) + a0 =
= an(a+ bi)n + · · ·+ a1(a+ bi) + a0 =
= an(a+ bi)n + · · ·+ a1(a+ bi) + a0 =
= an(a+ bi)n + · · ·+ a1(a+ bi) + a0 =
= an(a+ bi)n + · · ·+ a1(a+ bi) + a0 = f(a+ bi) = 0 = 0,

which means that also a+ bi = a− bi is the root of f .
(b) Now by induction on the degree n of the polynomial function f we

prove that if f has a k-root c = a + bi, then it also has a k-root c = a − bi
(k ≥ 2).
1. If n = 1 then the function f(x) = a1x+ a0 has the unique root −a0

a1
in

R, hence the statement is true.
2. Assume that the statement is valid for all polynomial functions with real

coefficients of degrees less than n where n ≥ 2. Let a polynomial function
f of degree n has a k-root a + bi. By the part (a) then f also has a root
a− bi. By Bézout Theorem 18.3, the polynomial f(x) is divisible by pairwise
coprime root factors x − a − bi and x − a + bi. Hence there is a polynomial
g(x) such that

f(x) = (x− a− bi)(x− a+ bi)g(x) = (x2 − 2ax+ a2 + b2)g(x).

Because f(x) and also x2−2ax+a2 +b2 are polynomials with real coefficients
(here we rely heavily on this assumption), the quotient g(x) arising when
dividing f(x) by x2− 2ax+a2 + b2 has real coefficients, too. The polynomial
function g is of degree n − 2, it has a k − 1-root a + bi and thus, by the
induction hypothesis, it also has a k − 1-root a − bi. This means that the
polynomial function f has a k-root a− bi.
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Corollary 19.4. The irreducible polynomials in R[x] are the polynomials
of degree 1 and the polynomials ax2 + bx + c of degree 2 with a negative
discriminator b2 − 4ac < 0.

Corollary 19.5. Every polynomial function with real coefficients of an odd
degree has at least one real root.

The next theorem from the 19th century is due to yet another ‘young heroe’
Ferdinand Gotthold Max Eisenstein3 and it gives a necessary condition
for a polynomial function with integer coefficients to have a rational root. By
using this theorem one can find in finitely many steps all rational roots of a
given polynomial function with integer coefficients provided such roots exist.

Theorem 19.6 (Eisenstein’s criterion for rational roots). Let f(x) =
anx

n+ · · ·+a1x+a0 be a polynomial with integer coefficients an, . . . , a0 ∈ Z.
If the corresponding polynomial function f ∈ Z〈x〉 has a rational root p

q ,
where p, q are coprime, then

p | a0 and q | an.

Proof. Let p
q be a root of the polynomial function f and let p, q be coprime.

Then
an

(
p

q

)n
+ · · ·+ a1

(
p

q

)
+ a0 = 0.

By multiplying both sides of this equality by qn we obtain

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0. (46)

After putting all members containing p on the left-hand side we get

p(anpn−1 + · · ·+ a1q
n−1) = −a0q

n.

Since p divides the left-hand side of this equality, it must divide its right-hand
side, and because p, q are coprime, we obtain p | a0.

3Ferdinand Gotthold Max Eisenstein (1823-1852) was a German mathematician. He
specialized in number theory and analysis, and proved several results that eluded even
Gauss. Like Galois and Abel before him, Eisenstein died before the age of 30. He was
born and died in Berlin, Prussia.

The following autobiographical statement from his “Autobiography” (1843) was writ-
ten when Eisenstein was 20: “As a boy of six I could understand the proof of a mathe-
matical theorem more readily than that meat had to be cut with one’s knife, not one’s
fork.” And the following quote is due to Carl Friedrich Gauss, one of the greatest math-
ematicians of all times. “There have been only three epoch-making mathematicians:
Archimedes, Newton, and Eisenstein.” [14]
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Similarly, after putting all members in (46) containing q on the left-hand
side we have

q(an−1p
n−1 + · · ·+ a1pq

n−2 + a0q
n−1) = −anpn.

Since now q divides the left-hand side of the equality, it must divide its right-
hand side, and again, since p, q are coprime, we obtain q | an as required.

Example 19.7. Using Eisenstein’s criterion we find all rational roots of the
polynomial function f(x) = 24x3 + 2x2 − 11x− 3.

If f has a rational root p
q , then by Theorem 19.6, p | −3, q | 24. This

means that

p ∈ {1, 3,−1,−3},
q ∈ {1, 2, 3, 4, 6, 8, 12, 24,−1,−2,−3,−4,−6,−8,−12,−24}.

Hence the polynomial function f can only have rational roots from the set

{1, 1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
12 ,

1
24 , 3,

3
2 ,

3
4 ,

3
8}∪

∪ {−1,−1
2 ,−

1
3 ,−

1
4 ,−

1
6 ,−

1
8 ,−

1
12 ,−

1
24 ,−3,−3

2 ,−
3
4 ,−

3
8}.

One can verify, for example via Horner’s scheme, that the only rational
roots of f are the numbers 3

4 , −
1
2 , −

1
3 which are the simple roots. �

Exercises.

Exercise 19.1. Find all roots of the polynomial function f(x) = x4− 4x2 +
8x− 4 if you know that one of its roots is 1 + i.
Exercise 19.2. Construct a polynomial function of the least degree with real
coefficients which has the following roots: the number 1 as a 2-root and the
numbers 1− i and −2 as simple roots.
Exercise 19.3. Find all rational roots of the following polynomial functions:

(a) x3 − 6x2 + 11x− 6;

(b) 2x3 + 3x2 − 3x− 2;

(c) 4x4 − 7x2 − 5x− 1.
Exercise 19.4. Find the root decomposition of the polynomial 16x4−8x+3.
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20 Derivatives of polynomials

In mathematical analysis a derivative of a function f : R→ R is defined as a
certain limit. In algebra a derivative of a polynomial (a polynomial function)
is defined over an arbitrary field F, so the traditional concept of a limit cannot
be used.

Definition 20.1. Let f(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0 be

a polynomial in one indeterminate over a field F where n ∈ N+. Then the
polynomial

(f(x))′ = f ′(x) := n×anxn−1 +(n−1)×an−1x
n−2 + · · ·+2×a2x+a1 (47)

is called the (first) derivative of the polynomial f(x). For polynomials
f(x) = a0 of degree 0 (a0 ∈ F \ {0}) we have f ′(x) := 0.

Let us recall that if k ∈ N+ and a is an element of some field (F,+, ·), then
the symbol k × a means (a+ · · ·+ a)k−times.

Example 20.2. If f(x) = 2x5 + 3x4 + 4x2 + 3x+ 2 is a polynomial over Z5,
then

f ′(x) = 5× 2x4 + 4× 3x3 + 2× 4x+ 3 = 2x3 + 3x+ 3.

�

From the previous example we see that if f(x) is a polynomial over a field of
finite characteristics and deg f(x) = n ≥ 1, then the degree of the derivative
f ′(x) does not need to be n− 1. However, if f(x) is a polynomial over a field
of characteristics ∞ and deg f(x) = n ≥ 1, then its derivative obviously is a
a polynomial of degree n− 1.
If no confusion arises, instead of k × a we shall simply write k · a (or only

ka). The equality (47) can thus be written in a simpler form

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x+ a1.

We see that although in algebra the derivative of a polynomial is defined via
a certain ‘mechanical manipulation’ with its coefficients and exponents, it
has an analogous form as the derivative of a real (polynomial) function of a
real variable known from mathematical analysis. Analogous rules also hold
for derivatives of the sum and the product of polynomials as the following
theorem shows.
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Theorem 20.3. Let f(x), g(x) be polynomials over a field F. Then

(f(x) + g(x))′ = f ′(x) + g′(x), (48)
(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x), (49)

(∀m ∈ N+) ((x− c)m)′ = m(x− c)m−1. (50)

Proof. In proving the equality (48) we assume for simplicity that

f(x) = anx
n + · · ·+ a1x+ a0,

g(x) = bnx
n + · · ·+ b1x+ b0.

Then

f(x) + g(x) = (an + bn)xn + · · ·+ (a1 + b1)x+ (a0 + b0).

The derivative of the sum f(x) + g(x) then gives us

(f(x) + g(x))′ = n(an + bn)xn−1 + · · ·+ (a1 + b1)
= (nanxn−1 + · · ·+ a1) + (nbnxn−1 + · · ·+ b1)
= f ′(x) + g′(x),

hence the equality (48) holds. It can also be extended by induction for the
sum of any finite number of polynomials.
For proving (49) we denote

f(x) = amx
m + · · ·+ a1x+ a0 =

m∑
i=0

aix
i,

g(x) = bnx
n + · · ·+ b1x+ b0 =

n∑
j=0

bix
i.

The product of polynomials f(x), g(x) contains only members of the form

aix
ibjx

j , where i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

The derivative of such a member is

(aixibjxj)′ = (aibjxi+j)′ = (i+ j)aibjxi+j−1

= iaix
i−1 · bjxj + aix

i · jbjxj−1

= (aixi)′ · (bjxj) + (aixi) · (bjxj)′.
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By adjustments we then obtain

(f(x) · g(x))′ =

 m∑
i=0

aix
i ·

n∑
j=0

bjx
j

′

=

 m∑
i=0

n∑
j=0

aix
ibjx

j

′

=
m∑
i=0

n∑
j=0

(
aix

ibjx
j
)′

=
m∑
i=0

n∑
j=0

((
aix

i
)′ · (bjxj)+

(
aix

i
)
·
(
bjx

j
)′)

=
m∑
i=0

(
aix

i
)′ · n∑

j=0
bjx

j +
m∑
i=0

aix
i ·

n∑
j=0

(
bjx

j
)′

=
(

m∑
i=0

aix
i

)′
·
n∑
j=0

bjx
j +

m∑
i=0

aix
i ·

 n∑
j=0

bjx
j

′
= f ′(x) · g(x) + f(x) · g′(x),

hence the equality (49) holds.
The equality (50) will be proved by induction on m.

1. For m = 1 we have ((x− c)1)′ = 1 and 1 · (x− c)0 = 1.
2. We assume that

((x− c)m)′ = m(x− c)m−1

for m ≥ 1. We show that then

((x− c)m+1)′ = (m+ 1)(x− c)m.

By adjustments and using the induction hypothesis we obtain

((x− c)m+1)′ = ((x− c)m(x− c))′ = m(x− c)m−1(x− c) + (x− c)m(x− c)0

= m(x− c)m + (x− c)m = (m+ 1)(x− c)m.

Hence the equality (50) holds.

Next we inductively define derivatives of higher orders.
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Definition 20.4. Let f(x) ∈ F[x] be a polynomial over a field F and let
k ∈ N+. Then the kth derivative f (k)(x) of the polynomial f(x) is

f (1)(x) := f ′(x),

f (k+1)(x) :=
(
f (k)(x)

)′
.

For example, for the polynomial f(x) = 4x3 − 2x + 1 we have f ′(x) =
12x2 − 2, f ′′(x) := f (2)(x) = 24x, f ′′′(x) := f (3)(x) = 24 and f (4)(x) = 0.
From now on we shall only focus on polynomials over the field C of complex

numbers (without explicitly saying so in statements below). We shall study
the relationship between the derivatives of the polynomials and the multiple
roots of their corresponding polynomial functions.
Theorem 20.5. If c is a k-root of a polynomial function f , then c is a
(k − 1)-root of the polynomial function f ′.
Proof. Let c be a k-root (k ≥ 1) of a polynomial function f . Then

f(x) = (x− c)k · g(x), where g(c) 6= 0

and

f ′(x) = k(x− c)k−1 · g(x) + (x− c)k · g′(x) =
= (x− c)k−1 · (kg(x) + (x− c) · g′(x)).

Since for the polynomial function h(x) := kg(x) + (x− c) · g′(x) we have

h(c) = kg(c) + (c− c) · g′(c) = kg(c) 6= 0,

we see that c is a (k − 1)-root of the polynomial function f ′.

Theorem 20.6. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 2. Then c is
a k-root of the corresponding polynomial function f ∈ C〈x〉 if and only if

f(c) = 0, f ′(c) = 0, . . . , f (k−1)(c) = 0, f (k)(c) 6= 0. (51)

Proof. Let c be a k-root of the polynomial function f . Then, by Theo-
rem 20.5, c is a (k − 1)-root of the polynomial function f ′, (k − 2)-root of
the polynomial function f ′′, etc. (k − (k − 1))-root (i.e. simple root) of the
polynomial function f (k−1) and it is not a root of the polynomial function
f (k). Hence (51) holds.
Conversely, assume that (51) holds, so c is a root of f .
If c is an `-root and ` < k, then f (`)(c) 6= 0, which contradicts (51).
If c is an `-root and ` > k, then f (k)(c) = 0, which again contradicts (51).
So we must have that c is a k-root of the polynomial function f .
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Example 20.7. We determine a, b ∈ R such that the polynomial function

f(x) = x3 + ax2 + bx+ 1

has a 2-root c = −2.
We calculate f ′(x), f(−2), f ′(−2):

f ′(x) = 3x2 + 2ax+ b,

f(−2) = −8 + 4a− 2b+ 1,
f ′(−2) = 12− 4a+ b.

By the previous theorem we must have f(−2) = f ′(−2) = 0, i.e.

4a− 2b− 7 = 0,
−4a+ b+ 12 = 0.

This gives us a = 17
4 , b = 5. Since f ′′(x) = 6x+ 2a and f ′′(−2) 6= 0, we have

that −2 is a 2-root of the polynomial function f . �

Corollary 20.8. A polynomial function f ∈ C〈x〉 has at least one multiple
root if and only if the polynomials f(x), f ′(x) have a common divisor of
degree at least 1.

Proof. Assume that a polynomial function f ∈ C〈x〉 has a k-root c (k ≥ 2).
Then, by Theorem 20.6, f(c) = f ′(c) = 0. This by Bézout Theorem 18.3
means that x− c divides the polynomials f(x) and f ′(x), and so they have a
common divisor of degree at least 1.
Conversely, let d(x) be a a common divisor of the polynomials f(x), f ′(x)

and let deg d(x) ≥ 1. Then there are polynomials g(x), q(x) such that

f(x) = d(x) · g(x), f ′(x) = d(x) · q(x).

By The Fundamental Theorem of Algebra 18.12, the polynomial function
d(x) has a root c ∈ C, hence d(c) = 0. Then f(c) = 0 and f ′(c) = 0. This by
Theorem 20.6 means that the element c is at least a 2-root of the polynomial
function f(x).

Theorem 20.9. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 1. Let d(x) :=
(f(x), f ′(x)) and let F (x) ∈ C[x] be a polynomial such that f(x) = d(x)·F (x).
Then the corresponding polynomial function F ∈ C〈x〉 has the same roots as
the polynomial function f ∈ C〈x〉 but all of them are simple.
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Proof. Let the function f have a k-root c. Then the canonical decompo-
sition of the polynomial f(x) has (x − c)k as a factor and the canonical
decomposition of the polynomial f ′(x) has, by Theorem 20.5, the polynomial
(x − c)k−1 as a factor. Thus the canonical decomposition of the polynomial
d(x) = (f(x), f ′(x)) has, by Theorem 17.7, the polynomial (x − c)k−1 as a
factor. Hence the canonical decomposition of the polynomial F (x) has, by
Corollary 17.5, the polynomial (x − c)1 as a factor. This means that c is a
simple root of the polynomial function F (x).

The construction of the polynomial F (x) described in the previous theorem
is said to be a separation of roots or a removal of multiple roots.

Example 20.10. We find the roots of the polynomial function

f(x) = x5 − 6x4 + 16x3 − 24x2 + 20x− 8.

This polynomial function has a unique rational root 2. Therefore

f(x) = (x− 2)(x4 − 4x3 + 8x2 − 8x+ 4).

Now it suffices to find the roots of f(x) = x4 − 4x3 + 8x2 − 8x + 4. This
polynomial function does not have rational roots. We check if it has multiple
roots. The greatest common divisor of the polynomials f(x), f ′(x) is the
polynomial d(x) = x2 − 2x + 2 (verify this in detail). From this it follows
that also F (x) = x2−2x+ 2. The roots of the polynomial function F are the
numbers 1 + i and 1 − i. The polynomial function f thus has the following
roots: a simple root 2 and double roots 1 + i and 1− i. �

Sometimes, for example when decomposing a polynomial into so-called
partial fractions, it is useful to express a polynomial in an other form. One
of such options will be described in the following theorem.

Theorem 20.11. Let f(x) = anx
n+ · · ·+a1x+a0 ∈ C[x] be a polynomial of

degree n ≥ 1 and let c ∈ C. Then there are unique elements b0, b1, . . . , bn ∈ C
such that

f(x) = bn(x− c)n + bn−1(x− c)n−1 + · · ·+ b2(x− c)2 + b1(x− c) + b0. (52)

Proof. We proceed by induction on n.
1. Let n = 1. Then by Lemma 18.7 we have f(x) = q(x)(x − c) + f(c),

where the polynomial q(x) is of degree 0, i.e. q(x) = b1 ∈ C. If we denote
f(c) = b0, then f(x) = b1(x− c) + b0. From Theorem 16.1 it follows that the
elements b1, b0 are unique.
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2. Assume that the statement is valid for every polynomial of degree less
than n where n ≥ 2. By Lemma 18.7 again, for the polynomials f(x) and
x− c we get f(x) = (x− c)q(x)+f(c), where the polynomial q(x) is of degree
n− 1. By the induction hypothesis there are elements d0, . . . , dn−1 ∈ C such
that

q(x) = dn−1(x− c)n−1 + · · ·+ d1(x− c) + d0.

After substituting and adjustments we obtain

f(x) = dn−1(x− c)n + · · ·+ d1(x− c)2 + d0(x− c) + f(c).

If we denote b0 = f(c) and bi = di−1 for every i ∈ {1, . . . , n}, we obtain (52).
We now show the uniqueness of our form. Assume we have an other ex-

pression of the polynomial f(x) in the form

f(x) = km(x− c)m + · · ·+ k2(x− c)2 + k1(x− c) + k0.

Since the polynomial f(x) is of degree n, we have m = n. Let us adjust both
expressions of the polynomial f(x):

f(x) = (x− c)(bn(x− c)n−1 + · · ·+ b2(x− c) + b1) + b0,

f(x) = (x− c)(kn(x− c)n−1 + · · ·+ k2(x− c) + k1) + k0.

From this, by Theorem 16.1, it follows that

b0 = k0 and bn(x−c)n−1+· · ·+b2(x−c)+b1 = kn(x−c)n−1+· · ·+k2(x−c)+k1.

Now by the induction hypothesis we obtain

b1 = k1, b2 = k2, . . . , bn = kn,

and this completes the proof.

The expression of a polynomial f(x) in the form (52) is called a Taylor’s
series or a Taylor’s polynomial formula for the polynomial f(x) near c (or
with center c, or at point c) due to Brook Taylor.1 The elements b0, . . . , bn

1Brook Taylor FRS (1685-1731) was an English mathematician who is best known for
Taylor’s theorem and the Taylor series. Taylor was elected a fellow of the Royal Society
early in 1712, and in the same year sat on the committee for adjudicating the claims
of Sir Isaac Newton and Gottfried Leibniz, and acted as secretary to the society from
January 1714 to October 1718. From 1715 his studies took a philosophical and religious
bent. As a mathematician, he was the only Englishman after Sir Isaac Newton and
Roger Cotes capable of holding his own with the Bernoullis, but a great part of the
effect of his demonstrations was lost through his failure to express his ideas fully and
clearly. [14]
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are called coefficients of the Taylor series. It can be shown that

bi = f (i)(c)
i! , for every i ∈ {1, . . . , n},

where f (0)(c) = f(c), 0! = 1.
However, the coefficients b0, b1, . . . , bn can be easier calculated via Horner’s

scheme. A hint is given already by the previous theorem. The equality (52)
can be adjusted to the form

f(x) = (x− c)(bn(x− c)n−1 + · · ·+ b2(x− c) + b1) + b0.

The element b0 is the remainder obtained when dividing the polynomial f(x)
by x− c (this can be done via Horner’s scheme). If we denote

q1(x) = bn(x− c)n−1 + · · ·+ b2(x− c) + b1,

then by adjustments we have

q1(x) = (x− c)(bn(x− c)n−2 + · · ·+ b2) + b1

and we again see that the element b1 is the remainder obtained when dividing
the polynomial q1(x) by x−c. We can proceed further in this way so that the
partial quotients will be q1(x), q2(x), . . . , qn(x) and bi will be the remainder
obtained when dividing the polynomial qi(x) by the polynomial x − c for
i ∈ {1, 2, . . . , n}.
The calculation of the coefficients of the Taylor series of a polynomial via

Horner’s scheme will be illustrated in the following example.

Example 20.12. We find the Taylor series of the polynomial

f(x) = x4 + 3x3 − 2x2 + 3x+ 1

near 2.
The coefficients b0, b1, b2, b3, b4 can be found by a gradual process of divi-
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sions as described above.

1 3 −2 3 1

2 2 10 16 38

1 5 8 19 b39 = b0

2 2 14 44

1 7 22 b63 = b1

2 2 18

1 9 b40 = b2

2 2

1 b11 = b3

2 2

b1 = b4

Hence the Taylor series of a given polynomial with center 2 is

f(x) = 39 + 63(x− 2) + 40(x− 2)2 + 11(x− 2)3 + (x− 2)4.

�

Exercises.

Exercise 20.1. Find a ∈ R such that the polynomial function given by
f(x) = x3 − 5x2 + 3x+ a has a 2-root. Determine the third root.
Exercise 20.2. Find the Taylor series of the polynomial

g(x) = x4 + 11x3 + 45x2 + 81x+ 55

near −3.
Exercise 20.3. Find the coefficients of the polynomial

h(x) = (x− 2)4 + 4(x− 2)3 + 6(x− 2)2 + 10(x− 2) + 20.
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21 Polynomials in several indeterminates

The ring of polynomials in indeterminates x1, . . . , xn over a ring A is the ring
A[x1, . . . , xn] that arises by adjunction of algebraically independent elements
(over A) to the ring A as it was explained in Chapter 14. The elements of the
ring A[x1, . . . , xn] are called polynomials in indeterminates x1, . . . , xn over A
and these are expressions of the form

a0x
k01
1 · · · · · xk0n

n + a1x
k11
1 · · · · · xk1n

n + · · ·+ arx
kr1
1 · · · · · xkrn

n , (53)

where a1, . . . , ar ∈ A and kij ∈ N for i ∈ {0, . . . , r} and j ∈ {1, . . . , n}. The
elements a0, . . . , ar are called coefficients and the expressions

a0x
k01
1 · · · · · xk0n

n , a1x
k11
1 · · · · · xk1n

n , . . . , arx
kr1
1 · · · · · xkrn

n

are said to be the members of the polynomial (53). Analogously as for poly-
nomials in one indeterminate one can show that if F is a field then the
ring F[x1, . . . , xn] is an integral domain. The polynomials in indeterminates
x1, . . . , xn will usually be denoted by f(x1, . . . , xn), g(x1, . . . , xn), etc. For
example,

f(x1, x2, x3) = x4
1+x3

1x2x3+x2
3, g(x1, x2, x3) = 2x1+x4

3, h(x1, x2, x3) = 5

are polynomials of three indeterminates (and can be considered over the field
Q). From now on the ring A will always be considered to be a field F.

If every two of the n-tuples [k01, . . . , k0n], . . . , [kr1, . . . , krn] are pairwise
distinct, we say that the polynomial (53) is written in its normed form. By a
degree of a member axr1

1 ·· · ··xrn
n (a 6= 0) we mean the number r1+· · ·+rn and

the degree of a polynomial written in its monic form is the maximal of degrees
of its members. The ordered n-tuple [r1, . . . , rn] is said to be the height of
the member axr1

1 · · · · · xrn
n . Such a member is called the leading member of

a polynomial if its height is the greatest in the sense that comparing it to
the height [k1, . . . , kn] of any other distinct member of the polynomial the
first non-zero number in the sequence r1 − k1, . . . , rn − kn is positive. The
height of the leading member of the polynomial is said to be the height of the
polynomial.

A permutation ϕ =
( 1 2 ... n
i1 i2 ... in

)
of the set {1, . . . , n} will simply be written

as (i1, i2, . . . , in). By a permutation of a polynomial f(x1, . . . , xn) we shall
mean the polynomial f(xi1 , . . . , xin) obtained from f(x1, . . . , xn) by swapping
the indeterminates x1 and xi1 , then x2 and xi2 , etc., and finally xn and xin .
From this it follows that an expression axr1

1 · · · · ·xrn
n is a member of a polyno-

mial f(x1, . . . , xn) if and only if axr1
i1
· · · · ·xrn

in
is a member of the polynomial
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f(xi1 , . . . , xin). For example, if

f(x1, x2, x3) = x2
1x2 + x1x2x3 + x3,

then
f(x2, x3, x1) = x2

2x3 + x2x3x1 + x1.

Notice that f(x1, x2, x3) 6= f(x2, x3, x1).

Definition 21.1. A polynomial f(x1, . . . , xn) over a field F is called sym-
metric if f(x1, . . . , xn) = f(xi1 , . . . , xin) for every permutation (i1, . . . , in)
of the set {1, . . . , n}.

It can easily be shown that the set of all symmetric polynomials in inde-
terminates x1, . . . , xn over an integral domain A is a subring of the integral
domain A[x1, . . . , xn] which again is an integral domain.

Example 21.2. The polynomial

f(x1, x2, x2) =x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2+
x3

1x2x3 + x1x
3
2x3 + x1x2x

3
3

is symmetric. �

Notice that if a symmetric polynomial f(x1, x2, x3) contains e.g. x2
1x2 as

a member, then it must also contain as members x2
1x3, x2

2x1, x2
2x3, x2

3x1
and x2

3x2, and if it contains e.g. x1x
3
2x3 as a member, then it must also

contain as members x3
1x2x3 and x1x2x

3
3. By generalising this observation, we

shall present and prove the following theoretical characterisation of symmetric
polynomials.

Theorem 21.3. Let a polynomial f(x1, . . . , xn) be written in its monic form.
Then f(x1, . . . , xn) is symmetric if and only if it contains, with each of
its members axr1

1 · · · · · xrn
n and with each of the permutations ϕ of the set

{1, . . . , n}, also the members axr1
ϕ(1) · · · · · x

rn

ϕ(n).

Proof. Let a polynomial f(x1, . . . , xn) be symmetric and let axr1
1 · · · · ·xrn

n be
its member. Then axr1

ϕ(1) · · · · · x
rn

ϕ(n) is a member of the polynomial

f(xϕ(1), . . . , xϕ(n)) = f(x1, . . . , xn).

Conversely, let a polynomial f(x1, . . . , xn) contain, with each of its non-
zero members axr1

1 · · · · · xrn
n and with each of the permutations ϕ of the set

{1, . . . , n}, also the members axr1
ϕ(1) · · · · · x

rn

ϕ(n). We prove that

f(x1, . . . , xn) = f(xϕ(1), . . . , xϕ(n)),
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i.e. that f(x1, . . . , xn) is symmetric. It suffices to show that the polynomials
f(x1, . . . , xn) and f(xϕ(1), . . . , xϕ(n)) contain the same members.

(a) Let axr1
1 · · · · · xrn

n be a member of the polynomial f(x1, . . . , xn), let ϕ
be an arbitrary permutation of {1, . . . , n} and let ψ be its inverse permuta-
tion. Then by assumption, axr1

ψ(1) · · · · · x
rn

ψ(n) is a member of the polynomial
f(x1, . . . , xn) and

axr1
ϕ(ψ(1)) · · · · · x

rn

ϕ(ψ(n)) = axr1
1 · · · · · xrn

n

is a member of the polynomial f(xϕ(1), . . . , xϕ(n)).
(b) Let bxk1

ϕ(1) ·· · ··x
kn

ϕ(n) be a member of the polynomial f(xϕ(1), . . . , xϕ(n)).
Then bxk1

1 · · · · · xkn
n is a member of the polynomial f(x1, . . . , xn) and by

assumption, also bxk1
ϕ(1)·· · ··x

kn

ϕ(n) is a member of the polynomial f(x1, . . . , xn).
From (a) and (b) it follows that f(x1, . . . , xn) = f(xϕ(1), . . . , xϕ(n)).

A symmetric polynomial that is the sum of all pairwise distinct members
axr1

i1
· · · · ·xrn

in
, where (i1, . . . , in) is a permutation of the set {1, . . . , n}, is said

to be a simple symmetric polynomial given by the member axr1
1 · · · · · xrn

n .
It will be briefly written in the form

∑
axr1

1 · · · · · xrn
n . From Theorem 21.3

it follows that every symmetric polynomial is the sum of simple symmetric
polynomials. The symmetric polynomial from Example 21.2 can thus be
briefly written as

f(x1, x2, x3) =
∑

x2
1x2 +

∑
x3

1x2x3.

The simple symmetric polynomials of the form

σ1(x1, . . . , xn) =
∑

x1,

σ2(x1, . . . , xn) =
∑

x1x2,

...

σn(x1, . . . , xn) =
∑

x1x2 . . . xn,

are called basic symmetric polynomials. A basic symmetric polynomial is such
simple symmetric polynomial in which all indeterminates occur in the first
power. For example, the basic symmetric polynomials in four indeterminates
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x1, x2, x3, x4 are

σ1(x1, x2, x3, x4) = x1 + x2 + x3 + x4,

σ2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

σ3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

σ4(x1, x2, x3, x4) = x1x2x3x4.

Let f(x) be a monic polynomial over the field C. We shall henceforth present
it in the form

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an (54)

that will best serve our needs. Let us denote the roots of the polynomial
function f by x1, x2, . . . , xn. Then the decomposition of the polynomial f(x)
into root factors is

f(x) = (x− x1)(x− x2) . . . (x− xn). (55)

If we multiply the root factors in (55) and we compare the forms (54) and
(55) of the polynomial f(x), we obtain

−a1 = x1 + x2 + · · ·+ xn = σ1(x1, . . . , xn),
a2 = x1x2 + x1x3 + · · ·+ xn−1xn = σ2(x1, . . . , xn),
−a3 = x1x2x3 + x1x2x4 + · · ·+ xn−2xn−1xn = σ3(x1, . . . , xn),

... (56)
(−1)nan = x1x2 . . . xn = σn(x1, . . . , xn).

The formulas in (56) enable us to calculate the roots of the polynomial func-
tion f provided some further relationship between the roots is given. The
equalities (56) are known as Vieta’s formulae due to Francois Viéte.1

If no confusion arises, we write σi instead of σi(x1, . . . , xn) from now on.

Example 21.4. We find roots of the polynomial function

f(x) = x3 −
√

2x2 − 5x+ 5
√

2,
1Francois Viéte (Latin: Franciscus Vieta) (1540 - 1603) was a French mathematician
whose work on new algebra was an important step towards modern algebra, due to
its innovative use of letters as parameters in equations. He was a lawyer by trade,
and served as a privy councillor to both Henry III and Henry IV. Vieta created many
innovations: the binomial formula, which would be taken by Pascal and Newton, and
the link between the roots and coefficients of a polynomial, called Vieta’s formulae.
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knowing that two of these roots are opposite numbers.
We denote the roots of the polynomial function by x1, x2, x3. Then from

(56) we obtain

x1 + x2 + x3 =
√

2,
x1x2 + x1x3 + x2x3 = −5,

x1x2x3 = −5
√

2.

The opposite roots will be denoted by x1, x2. Then x2 = −x1 and from
the first equation we get that x3 =

√
2. After substituting into the second

equation and after adjustment we have x2
1 = 5, i.e. x1 =

√
5 or x1 = −

√
5.

If x1 =
√

5, then x2 = −
√

5, x3 =
√

2.
If x1 = −

√
5, then x2 =

√
5, x3 =

√
2.

By the test of validity we verify that these numbers also satisfy the third
equation. The roots of the polynomial function f are thus the numbers√

5, −
√

5,
√

2. �

Let f(x1, x2) = x2
1 + x2

2. This simple symmetric polynomial can easily be
expressed via the basic symmetric polynomials. After an easy adjustment we
have

f(x1, x2) = x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 = σ2
1 − 2σ2.

Analogously one can express every simple symmetric polynomial and so also
every symmetric polynomial.

Theorem 21.5. To every symmetric polynomial f(x1, . . . , xn) there exists a
unique polynomial g(y1, . . . , yn) such that

f(x1, . . . , xn) = g(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)).

The polynomial g(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)) essentially is a poly-
nomial of n indeterminates where the indeterminates are the basic symmetric
polynomials σ1, . . . , σn. A formal proof of Theorem 21.5 will be skipped but
we shall present an example illustrating the procedures for proving Theo-
rem 21.5.

Example 21.6. We shall express the simple symmetric polynomial

f(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2 =
∑

x2
1x2

via the basic symmetric polynomials.
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The leading member of the polynomial
∑
x2

1x2 is x2
1x2. This member is

also the leading member of the product σ1σ2. By calculating the difference∑
x2

1x2 − σ1σ2 we obtain∑
x2

1x2 − σ1σ2 =
∑

x2
1x2 − (

∑
x2

1x2 − 3σ3)

(verify this in detail) which yields

f(x1, x2, x3) =
∑

x2
1x2 = σ1σ2 + 3σ3.

�

We proceed similarly in more complicated situations. Every symmetric
polynomial is the sum of simple symmetric polynomials. To each simple
symmetric polynomial we find the product of basic symmetric polynomials
such that the leading member of it will be the leading member of a given
simple symmetric polynomial. Their difference then obviously has the leading
member of smaller degree. We proceed this way until we obtain only basic
symmetric polynomials.

Example 21.7. We find a polynomial whose roots are squares of the roots
of the polynomial f(x) = x3 − x2 + 2x− 1.
For the roots c1, c2, c3 of the polynomial f(x) we have

σ1 = c1 + c2 + c3 = 1,
σ2 = c1c2 + c1c3 + c2c3 = 2,
σ3 = c1c2c3 = 1.

We determine the polynomial g(x) = x3 + b1x
2 + b2x+ b3 such that the roots

of the corresponding polynomial function g will be the numbers c2
1, c

2
2, c

2
3.

From the formulas (56) we obtain

b1 = −(c2
1 + c2

2 + c2
3),

b2 = c2
1c

2
2 + c2

1c
2
3 + c2

2c
2
3,

b3 = −c2
1c

2
2c

2
3.

The simple symmetric polynomials
∑
c2

1,
∑
c2

1c
2
2,
∑
c2

1c
2
2c

2
3 will be expressed

via the basic symmetric polynomials:∑
c2

1 − σ2
1 =

∑
c2

1 − (
∑

c2
1 + 2

∑
c1c2) = −2σ2,
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hence
∑
c2

1 = σ2
1 − 2σ2. Further,∑

c2
1c

2
2−σ2

2 =
∑

c2
1c

2
2− (

∑
c2

1c
2
2 + 2

∑
c2

1c2c3) = −2
∑

c2
1c2c3 = −2σ1σ3,

hence
∑
c2

1c
2
2 = σ2

2 − 2σ1σ3. Finally,
∑
c2

1c
2
2c

2
3 = σ2

3 . For the coefficients
b1, b2, b3 we thus obtain

b1 = −(σ2
1 − 2σ2) = −(12 − 2 · 2) = 3,

b2 = σ2
2 − 2σ1σ3 = 22 − 2 · 1 · 1 = 2,

b3 = −σ2
3 = −12 = −1.

Hence g(x) = x3 + 3x2 + 2x− 1. �

If a polynomial f(x) = xn+a1x
n−1+· · ·+an−1x+an has roots x1, x2, . . . , xn,

then the element

Dn = (x1 − x2)2(x1 − x3)2 . . . . . . . . . (x1 − xn)2

(x2 − x3)2 . . . . . . . . . (x2 − xn)2

...
(xn−2 − xn−1)2(xn−2 − xn)2

(xn−1 − xn)2

is said to be the discriminator of the polynomial f(x). The discriminator Dn

can also be viewed as a symmetric polynomial of n indeterminates.
The quadratic polynomial f(x) = x2 + a1x + a2 with roots x1, x2 thus

has the discriminator (x1 − x2)2. If we express it via the basic symmetric
polynomials and employ the formulas (56), we obtain

D2 = (x1 − x2)2 = (x1 + x2)2 − 4x1x2 = (−a1)2 − 4a2 = a2
1 − 4a2.

Similarly, for a cubic polynomial f(x) = x3+a1x
2+a2x+a3, its discriminator

can be expressed via its coefficients in the form

D3 = a2
1a

2
2 − 4a3

1a3 − 4a3
2 + 18a1a2a3 − 27a2

3.

Notice that the discriminator of a polynomial is non-zero if and only if there
are no multiple roots of the corresponding polynomial function.

Theorem 21.8. Let f(x) be a polynomial with real coefficients such that
the corresponding polynomial function f ∈ R〈x〉 has no multiple roots. The
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discriminator of the polynomial f(x) is positive if and only if the number
of pairs of conjugate imaginary complex roots is an even number, and it is
negative if and only if the number of pairs of conjugate imaginary complex
roots is an odd number.

Proof. Since f(x) is a polynomial with real coefficients, by Theorem 19.3 the
corresponding polynomial function f ∈ R〈x〉 has with every root c ∈ C \ R
also its conjugate complex root c. For an arbitrary pair of roots ci, cj then
one of the following situations must occur: both roots are real, one is real
while the other is imaginary, both are imaginary but are not conjugate, they
are conjugate of each other.
1. If ci, cj are real, then (ci − cj)2 > 0.
2. If ci is real and cj is imaginary, then (ci − cj)2(ci − cj)2 > 0.
3. If ci, cj are imaginary but are not conjugate, then (ci−cj)2(ci−cj)2 > 0.
4. If ci, cj are conjugate of each other, then (ci − cj)2 < 0.

From 1. – 4. the statement of the theorem follows.

Corollary 21.9. A cubic polynomial with real coefficients has three pairwise
distinct real roots if and only if its discriminator is positive. It has one
real and two imaginary (conjugate) roots if and only if its discriminator is
negative.

Exercises.

Exercise 21.1. Let the (complex) roots of the polynomial function f(x) =
x3−3x2−2x−1 be denoted c1, c2, c3. Calculate the values of the expressions:

(a) c2
1 + c2

2 + c2
3;

(b) 1
c2

1
+ 1

c2
2

+ 1
c2

3
;

(c) (c1 − c2)2 + (c1 − c3)2 + (c2 − c3)2.

Exercise 21.2. Let c1, c2, c3 be the (complex) roots of the polynomial func-
tion g(x) = x3 − 2x2 + x+ 1. Find a polynomial which has the roots:

(a) c1 + 2, c2 + 2, c3 + 2;

(b) c1c2, c1c3, c2c3;

(c) c1 + c2, c1 + c3, c2 + c3;
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(d) c2
1, c2

2, c2
3.

Exercise 21.3. Using Vieta’s formulae solve the following systems of equa-
tions over C:

(a)

x+ y = 1
xy = −2;

(b)

x2 + y2 = 13
xy = 6;

(c)

x+ y + z = −3
xy + xz + yz = −1

xyz = 3;

(d)

x+ y + z = 2
x2 + y2 + z2 = 6
x3 + y3 + z3 = 8.

22 Solving binomial equations

We dealt with basic concepts and facts concerning algebraic equations over
integral domains in Chapter ??. In this and the subsequent chapters we
focus on particular types of algebraic equations over the field C of complex
numbers. We start our study with binomial equations.
Definition 22.1. By a binomial equation we mean an algebraic equation
xn−a = 0 of degree n over the field C of complex numbers, where a ∈ C\{0}.
It is usually presented in the form

xn = a. (57)

If c is a root of the binomial equation (57), we sometimes write c = n
√
a and

we say that c is the nth complex root of a.
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If a is a non-negative real number, then the usual meaning of the symbol
n
√
a is to denote the nth real root of a, i.e. a non-negative real number b such

that bn = a. Such a meaning is common at secondary schools and used also
always in this text unless stated otherwise. The symbol n

√
a therefore denotes

the nth complex root of a, i.e. one of the solutions of the binomial equation
(57), only if such meaning of n

√
a is said explicitly.

In the next theorem we present so-called goniometrical solution of the bi-
nomial equation.

Theorem 22.2. The roots of the binomial equation

xn = a, where a = |a|(cosα+ i sinα) ∈ C \ {0}, (58)

are the complex numbers

ck = n
√
|a|
(

cos α+ 2kπ
n

+ i sin α+ 2kπ
n

)
for k ∈ {0, . . . , n− 1}. (59)

Proof. Let c = |c|(cosϕ+ i sinϕ) is a root of the equation (57). Then cn = a
and after substitution and calculating the power via Moivre’s theorem we
obtain

|c|n(cosnϕ+ i sinnϕ) = |a|(cosα+ i sinα).
The complex numbers are equal if and only if they have the same absolute
value (it is called alsomodulus ormagnitude) and they differ in their argument
(it is called also phase or angle) by an integer multiple of 2π. Hence

|c|n = |a| and nϕ = α+ 2kπ, k ∈ Z.

From this it follows that

|c| = n
√
|a| and ϕ = α+ 2kπ

n
, k ∈ Z.

So if c is a root of the equation (58), then

c = ck = n
√
|a|
(

cos α+ 2kπ
n

+ i sin α+ 2kπ
n

)
, k ∈ Z.

By the test of validity one can show that for every i ∈ Z, ck is a root of
(58). We know that an equation of the nth degree has in C exactly n roots.
Let us consider the roots c0, . . . , cn−1. We show that for k, l ∈ {0, . . . , n− 1}
and k 6= l we have ck 6= cl. Let us assume that ck = cl, i.e.

n
√
|a|
(

cos α+ 2kπ
n

+ i sin α+ 2kπ
n

)
= n
√
|a|
(

cos α+ 2lπ
n

+ i sin α+ 2lπ
n

)
.
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Then
α+ 2kπ

n
= α+ 2lπ

n
+ 2mπ (m ∈ Z).

This after an adjustment yields k− l = m ·n. Therefore n divides k− l, which
implies (since 0 ≤ |k−l| < n) that k−l = 0, i.e. k = l. The set {c0, . . . , cn−1}
is thus the set of all solutions of the binomial equation (58).

Each of the roots ck of the equation (58) can be, by using the Moivre’s
theorem, expressed in the form

ck = n
√
|a|
(

cos α
n

+ i sin α
n

)
·
(

cos 2kπ
n

+ i sin 2kπ
n

)
.

We denote εk =
(
cos 2kπ

n + i sin 2kπ
n

)
. In fact the set Kn = {ε0, . . . , εn−1}

is the set of all solutions of the binomial equation xn = 1, i.e. the set of
all nth complex roots of one. The set Kn equipped with the operation of
multiplication of complex numbers is a cyclic group (see Chapter ??). Every
element of the group (Kn, ·) which generates Kn will be called a primitive
nth root of one or a primitive root of the equation xn = 1. If ε is a primitive
nth root of one, then Kn = {1, ε, . . . , εn−1} (see again Chapter ??). Since for
every k ∈ {0, . . . , n− 1} we have

εk =
(

cos 2kπ
n

+ i sin 2kπ
n

)
=
(

cos 2π
n

+ i sin 2π
n

)k
= εk1 ,

ε1 is a generator of Kn, hence a primitive nth root of one.

Theorem 22.3. Let c be a root of the binomial equation xn = a for a ∈ C\{0}
and let ε is a primitive nth root of one. Then {c, cε, . . . , cεn−1} is the set of
all solutions of the equation xn = a.

Proof. Since c is a root of the equation xn = a and ε is a primitive root of
the equation xn = 1, we have for every k ∈ {0, . . . , n− 1},

(c · εk)n = cn · (εk)n = cn · (εk)n = cn · 1 = cn = a,

which means that also cεk is a root of the equation xn = a. As ε is a primitive
nth root of one, the numbers 1 = ε0, ε1, . . . , εn−1 are pairwise distinct and so
(since c 6= 0) the numbers c, cε, . . . , cεn−1 are pairwise distinct.

Example 22.4. We find the canonical decomposition of the polynomial
f(x) = x6 + 1 over the field R of real numbers.
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For every x ∈ R we have x6 + 1 > 0, i.e. f has no real roots. Because f(x)
is a polynomial with real coefficients, it must have three pairs of imaginary
complex conjugate roots. By solving the binomial equation x6 = −1 we find
all of them. We first write −1 = cosπ + i sin π. Then

c0 = cos π6 + i sin π6 =
√

3
2 + i

1
2 ,

c1 = cos π + 2π
6 + i sin π + 2π

6 = cos π2 + i sin π2 = i,

c2 = cos π + 4π
6 + i sin π + 4π

6 = cos 5π
6 + i sin 5π

6 = −
√

3
2 + i

1
2 ,

c3 = cos π + 6π
6 + i sin π + 6π

6 = cos 7π
6 + i sin 7π

6 = −
√

3
2 − i

1
2 ,

c4 = cos π + 8π
6 + i sin π + 8π

6 = cos 3π
2 + i sin 3π

2 = −i,

c5 = cos π + 10π
6 + i sin π + 10π

6 = cos 11π
6 + i sin 11π

6 =
√

3
2 − i

1
2 .

For the roots c0, c1, c2, c3, c4, c5 we have c0 = c5, c1 = c4, c2 = c3. If we
now calculate the products of root factors containing the complex conjugate
roots, we obtain quadratic polynomials irreducible over the field R:

(x− c0)(x− c5) = x2 −
√

3x+ 1,
(x− c1)(x− c4) = x2 + 1,
(x− c2)(x− c3) = x2 +

√
3x+ 1.

The canonical decomposition of the polynomial f(x) = x6 + 1 over the field
R is thus x6 + 1 = (x2 −

√
3x+ 1)(x2 + 1)(x2 +

√
3x+ 1). �

Exercises.

Exercise 22.1. Find all solutions of the binomial equations over the field C:

(a) x6 = 1;

(b) x4 = 1
16 ;

(c) x8 = 625;
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(d) x3 = i.

Exercise 22.2. Find the canonical decompositions of the polynomials f(x)
into irreducible polynomials over the field R in cases:

(a) f(x) = x6 − 1;

(b) f(x) = x8 + 1;

(c) f(x) = x4 + 2.

23 Quadratic and cubic equations over C

The equation
ax2 + bx+ c = 0, (60)

where a, b, c ∈ C and a 6= 0, is said to be a quadratic equation over C. In case
its coefficients are real numbers we know the formula for its roots already
from secondary school. We show in this chapter that an analogous formula
is valid for the roots of a quadratic equation whose coefficients are complex
numbers.
To present the roots satisfactorily also in this case, one needs to be able

to express a square root of a complex number as a complex number in its
traditional algebraic form a + bi. We show here how to do it and so the
reader should be able to find full solutions to quadratic equations over the
field C. We also show the reader how to solve, over C, algebraic equations
of degrees three called cubic equations. Solving equations of degrees four in
general will be skipped throughout this textbook, we just notice that solving
them in radicals is possible. On the other hand, solving algebraic equations of
degrees five or more in radicals is not possible in general as we mentioned in
Chapter 19 with respect to the ‘romantic heroes’ of modern algebra, Henrik
Abel and Evariste Galois. However, there are procedures for solving very
special algebraic equations of degrees five and more and we present this in
the next chapter.

Lemma 23.1. For every complex number a+ bi there is its square complex
root

x = ±
(√

1
2

(√
a2 + b2 + a

)
+ iδ

√
1
2

(√
a2 + b2 − a

))
, (61)

where δ = 1 for b > 0 and δ = −1 for b < 0.
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Proof. If x is the square complex root of the number a+ bi, then x2 = a+ bi.
The number x is complex thus x = u+ vi, whence (u+ vi)2 = a+ bi. After
an adjustment we obtain

u2 − v2 + 2uvi = a+ bi,

and this gives us the system of two equations with two real unknowns u, v:

u2 − v2 = a,

2uv = b.

By squaring both equations and by taking their sum we get

(u2 + v2)2 = a2 + b2.

Now because a2 + b2 ≥ 0, we have

u2 + v2 =
√
a2 + b2.

From the equations u2 − v2 = a, u2 + v2 =
√
a2 + b2 it follows that

u = ±
√

1
2

(√
a2 + b2 + a

)
, v = ±

√
1
2

(√
a2 + b2 − a

)
.

The equation 2uv = b yields that b > 0 if and only if both numbers u, v are
either positive or negative and b < 0 if and only if one of u, v is positive and
the other is negative. Now (61) follows.
By a straightforward calculation one can verify that the complex numbers

given by (61) satisfy x2 = a + bi, thus they are indeed the square complex
roots of a+ bi.

We now present the solution to the quadratic equation (60). Notice that
(60) is equivalent to the monic equation

x2 + b

a
x+ c

a
= 0.

We gradually adjust the polynomial x2 + b
ax+ c

a to the form

x2 + b

a
x+ c

a
= x2 + b

a
x+ b2

4a2 + c

a
− b2

4a2

=
(
x+ b

2a

)2
− b2 − 4ac

4a2 =
(
x+ b

2a

)2
−

(√
b2 − 4ac

2a

)2

=
(
x+ b−

√
b2 − 4ac
2a

)
·

(
x+ b+

√
b2 − 4ac
2a

)
,
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which in fact is its decomposition into the product of root factors. Here√
b2 − 4ac is one concretely chosen square complex root of the number b2−4ac

which is called the quadratic discriminant. Hence we obtain the following
theorem:

Theorem 23.2. The roots of the quadratic equation (60) are the complex
numbers

x1 = −b+
√
b2 − 4ac

2a , x2 = −b−
√
b2 − 4ac

2a ,

where the symbol
√
b2 − 4ac denotes one chosen square complex root of the

quadratic discriminant b2 − 4ac.

Example 23.3. We solve the quadratic equation x2− (5 + 4i)x+ 6 + 8i = 0.
In this case a = 1, b = −(5 + 4i), c = 6 + 8i. Then√

b2 − 4ac =
√
−15 + 8i = ±(1 + 4i).

We choose
√
−15 + 8i = 1 + 4i and we get

x1 = 3 + 4i, x2 = 2.

�

In the rest of this chapter we deal with cubic equations over the field C.
These are equations of the form

ax3 + bx2 + cx+ d = 0

where a, b, c, d ∈ C and a 6= 0. Each such equation can be adjusted to its
equivalent monic form

x3 + a2x
2 + a1x+ a0 = 0. (62)

After using the substitution x = y − a2
3 we obtain the cubic equation

y3 + py + q = 0, (63)

where p = a1 − a2
2

3 and q = 2a2
3

27 −
a1a2

3 + a0. This is called a reduced cubic
equation, meaning that the coefficient for y2 is 0. We employ an another
substitution y = u+ v. Then we get

(u+ v)3 + p(u+ v) + q = 0,
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and after an adjustment,

u3 + v3 + (3uv + p)(u+ v) + q = 0.

If u, v are chosen such that 3uv + p = 0, i.e. uv = −p3 , then

u3 + v3 = −q and u3v3 = −p
3

27 .

In this case we can consider u3, v3 to be the roots of the quadratic equation

z2 + qz − p3

27 = 0,

which is called the quadratic resolvent of the cubic equation (63). Its roots
are

z1 = u3 = −q2 +
√(q

2

)2
+
(p

3

)3
= −q2 + 1

18
√
−3D3,

z2 = v3 = −q2 −
√(q

2

)2
+
(p

3

)3
= −q2 −

1
18
√
−3D3,

where D3 = −4p3 − 27q2 is the discriminant of the reduced cubic equation
(63).
For expressing the number y = u+ v we thus have nine possibilities. If

u1 =
3
√
−q2 + 1

18
√
−3D3

is one of the (three) third complex roots of − q2 + 1
18
√
−3D3, then v1 can be

calculated (uniquely) from the equality uv = −p3 (i.e. v1 = − p
3u1

) and we
denote it as

v1 =
3
√
−q2 −

1
18
√
−3D3.

After denoting one of the third complex roots of the number 3
√
− q2 + 1

18
√
−3D3

by u1, the other two third complex roots are, by Theorem 24.3, u2 = εu1
and u3 = ε2u1. Here ε is a primitive root of the equation x3 = 1, i.e.
ε = − 1

2 + 1
2 i
√

3. The corresponding numbers v2, v3 can be determined from
the equality uv = −p3 :

v2 = − p

3u2
= − p

3u1ε
= v1

ε
= v1ε

2,

v3 = − p

3u3
= − p

3u1ε2 = v1

ε2 = v1ε.
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For y1, y2, y3 we thus have

y1 = u1 + v1,

y2 = u1ε+ v1ε
2, (64)

y3 = u1ε
2 + v1ε.

From this, using the substitution x = y − a2
3 , we can calculate the roots x1,

x2, x3 of the equation (61). By the test of validity one can verify that the
numbers y1, y2, y3 are the roots of the equation (62), resp. the numbers x1,
x2, x3 are the roots of the equation (61).
We formulate the obtained results (for a reduced cubic equation of the form

(63)) in the following theorem:

Theorem 23.4. A cubic equation y3 + py + q = 0 over C has solutions

y1 =
3
√
−q2 + 1

18
√
−3D3 +

3
√
−q2 −

1
18
√
−3D3,

y2 = ε
3
√
−q2 + 1

18
√
−3D3 + ε2 3

√
−q2 −

1
18
√
−3D3,

y3 = ε2 3
√
−q2 + 1

18
√
−3D3 + ε

3
√
−q2 −

1
18
√
−3D3,

where D3 = −4p3 − 27q2 is the discriminant of this equation and ε is a
primitive third root of one.

The above formulas for solving cubic equations are called Cardano formu-
las (though Gerolamo Cardano1 was not the one who discovered them,

1Gerolamo Cardano (1501-1576) was an Italian mathematician, physician, astrologer,
philosopher and gambler, best known as the earliest founder of probability and the
establisher of the binomial coefficients and the binomial theorem, which was comprised
in his book, Opus novum de proportionibus. He wrote more than 200 works on medicine,
mathematics, physics, philosophy, religion, and music.
Cardano partially invented and described several mechanical devices including the

combination lock, the gimbal consisting of three concentric rings allowing a supported
compass or gyroscope to rotate freely, and the Cardan shaft with universal joints, which
allows the transmission of rotary motion at various angles and is used in vehicles to
this day. He studied hypocycloids, published in de proportionibus 1570. The generating
circles of these hypocycloids were later named Cardano circles or cardanic circles and
were used for the construction of the first high-speed printing presses.

Today, he is well-known for his achievements in algebra. He made the first systematic
use of negative numbers, published with attribution the solutions of other mathemati-
cians for the cubic and quartic equations, and acknowledged the existence of imaginary
numbers. [14]
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see again [12]). To use these formulas is not always useful as the following
example shows.

Example 23.5. One can easily check that the roots of the cubic equation

x3 − 3x2 + x+ 5 = 0

are the numbers −1, 2 + i, 2− i. By substitution x = y+ 1 the equation can
be adjusted to a reduced cubic equation y3 − 2y + 4 = 0. Its roots are the
numbers −2, 1 + i, 1− i (verify this). By using the Cardano formulas we get

y1 =
3
√
−2 + 10

9
√

3 +
3
√
−2− 10

9
√

3,

y2 = ε
3
√
−2 + 10

9
√

3 + ε2 3
√
−2− 10

9
√

3,

y3 = ε2 3
√
−2 + 10

9
√

3 + ε
3
√
−2− 10

9
√

3.

Since y1 is a real number, we have y1 = 2, however, this is not immediately
visible from the given expression (try to find an approximate calculation of
the roots y1, y2, y3). �

The situation is even more difficult when the cubic equation has all three
roots real, that is, when D3 > 0. In this case the real roots are expressed via
the Cardano formulas in their complex form (since

√
−3D3 is an imaginary

number). The presented Cardano procedure is thus not always useful in prac-
tice. It has mainly a theoretical and historical importance because searching
for solutions to cubic equations (see again [12] for more details) contributed
to creating the theory of complex numbers.

Exercises.

Exercise 23.1. Solve the following quadratic equations over the field C:

(a) x2 − (2 + i)x+ 7i− 1 = 0;

(b) (2 + i)x2 − (5− i)x+ 2− 2i = 0;

(c) x2 − (6− 4i)x+ 5− 12i = 0.

Exercise 23.2. Decompose the polynomial x4 − 3x2 + 4 into
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(a) root factors over C;

(b) irreducible polynomials over R.

Exercise 23.3. Find the decomposition of the polynomial x4+6x3+9x2+100
into irreducible polynomials in R[x].

Exercise 23.4. Find all (complex) roots of the polynomial x4+2x2−24x+72.

Exercise 23.5. Using the Cardano formulas solve the following cubic equa-
tions over the field C:

(a) x3 − 9x2 + 36x− 28 = 0;

(b) x3 − 15x+ 22 = 0;

(c) x3 + x+ 10.

24 Reciprocal equations

Some algebraic equations over the field C can be solved such that we dimin-
ish their degree via a suitable substitution. A simple example is given by
biquadratic equations, that is, equations of the form

x4 + px2 + q = 0, p, q ∈ C,

which we solve via the substitution y = x2. In general, from the equation

aknx
kn + ak(n−1)x

k(n−1) + · · ·+ akx
k + a0 = 0 (65)

over C we obtain via the substitution y = xk the equation

akny
n + ak(n−1)y

n−1 + · · ·+ aky + a0 = 0. (66)

One can show that every solution α ∈ C of the equation (65) is a solution
of some binomial equation xk = β, where β ∈ C is a suitable solution of the
equation (66).

Example 24.1. We find all solutions of the equation x6− 5x3− 14 = 0 over
the field C.

If we use the substitution y = x3, we obtain the equation y2− 5y− 14 = 0.
The roots of this equation are y1 = 7, y2 = −2. By solving the binomial
equations

x3 = 7 a x3 = −2
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we obtain all six roots of the original equation:

x1 = 3√7, x2 = 3√7
(
−1

2 + i
√

3
2

)
, x3 = 3√7

(
−1

2 −
i
√

3
2

)
,

x4 = − 3√2, x5 = 3√2
(

1
2 −

i
√

3
2

)
, x6 = 3√2

(
1
2 + i

√
3

2

)
.

(Perform all necessary calculations in detail.) �

In the rest of this chapter we focus on very special algebraic equations over
the field C called reciprocal equations that can be solved in spite of having
degrees higher than four. These equations are ‘symmetric’ and their degree
can also be diminished via a suitable substitution.

Definition 24.2. A polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0, n ≥ 1,

over the field C is said to be a positively reciprocal polynomial if

ai = an−i, for every i ∈ {0, 1, . . . , n}.

If f(x) is a positively reciprocal polynomial over C, then for the corresponding
polynomial function f ∈ C〈x〉 the equation f(x) = 0 is said to be a positively
reciprocal equation over C.

The next theorem provides a certain characterisation of positively recipro-
cal polynomials which highlights their internal symmetry.

Theorem 24.3. A polynomial f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 ∈ C[x]
is positively reciprocal if and only if for the corresponding polynomial function
f ∈ C〈x〉 the following holds:

(∀x 6= 0) f(x) = xnf

(
1
x

)
. (67)

Proof. If f(x) is a positively reciprocal polynomial over C, then it can be
written as

f(x) = aox
n + a1x

n−1 + · · ·+ a1x+ a0.

From this, for the corresponding polynomial function f ∈ C〈x〉 and x 6= 0 by
adjustments we obtain

f(x) = xn

(
a0 + a1

(
1
x

)
+ · · ·+ a1

(
1
x

)n−1
+ a0

(
1
x

)n)
,
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that is,

f(x) = xnf

(
1
x

)
.

Conversely, let x 6= 0 and f(x) = xnf
( 1
x

)
for f ∈ C〈x〉. Then

anx
n + an−1x

n−1 + · · ·+ a0 = xn

(
an

(
1
x

)n
+ an−1

(
1
x

)n−1
+ · · ·+ a0

)
.

By comparing the left- and right-hand sides for the corresponding polynomials
of the unknown x, we obtain that for all i ∈ {0, 1, . . . , n}, ai = an−i.

Corollary 24.4. If a positively reciprocal equation f(x) = 0 over C has a
root α ∈ C, then it also has the root 1

α which is the inverse element to α in
the field C.

Proof. Since a positively reciprocal equation f(x) = 0 has a coefficient an 6= 0
and an = a0, every its (complex) root is non-zero. If α ∈ C is a root, i.e.
f(α) = 0, then from the previous theorem we get that αnf

( 1
α

)
= 0, hence

also f
( 1
α

)
= 0. This means that 1

α is a root of the positively reciprocal
equation f(x) = 0.

Corollary 24.5. Let f(x) be a positively reciprocal polynomial of an odd
degree over C. Then f(x) = (x+ 1)g(x), where g(x) is a positively reciprocal
polynomial of an even degree over C.

Proof. By substituting −1 into (67) we obtain (−1)nf(−1) = f(−1). After
an adjustment we have f(−1) = 0, so −1 is a root of the corresponding
polynomial function f . By Bézout Theorem 18.3 we get f(x) = (x+ 1)g(x),
where g(x) is a polynomial of an even degree. From the last equation we
obtain that for every x 6= 0, f

( 1
x

)
=
( 1
x + 1

)
g
( 1
x

)
. If we substitute from the

last two equations f(x) and f
( 1
x

)
into (67), we obtain after an adjustment

(∀x 6= −1) g(x) = xn−1g

(
1
x

)
.

One can easily check that this also holds for x = −1. From Theorem 24.3 it
then follows that g(x) is a positively reciprocal polynomial of an even degree
n− 1 over C.

Definition 24.6. A polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0, n ≥ 1,
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over the field C is said to be a negatively reciprocal polynomial if

ai = −an−i, for every i ∈ {0, 1, . . . , n}.

If f(x) ∈ C[x] is a negatively reciprocal polynomial, then then for the corre-
sponding polynomial function f ∈ C〈x〉 the equation f(x) = 0 is said to be a
negatively reciprocal equation over C.

Analogously as we proved Theorem 24.3 and the Corollaries 24.4 and 24.5,
one can also prove the following three statements (write down their proofs
in detail). The first theorem characterises negatively reciprocal polynomials
over C.

Theorem 24.7. A polynomial f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 ∈ C[x]
is negatively reciprocal if and only if for the corresponding polynomial function
f ∈ C〈x〉 the following holds:

(∀x 6= 0) f(x) = −xnf
(

1
x

)
.

Corollary 24.8. If a negatively reciprocal equation f(x) = 0 over C has a
root α ∈ C, then it also has the root 1

α .

Corollary 24.9. Let f(x) be a negatively reciprocal polynomial over C. Then
f(x) = (x− 1)g(x) where g(x) is a positively reciprocal polynomial over C.

From Corollaries 24.5 and 24.9 it follows that when studying reciprocal
equations over C one can focus only on the positively reciprocal equations of
even degrees. Such equations can be expressed in the form

a0x
2m + a1x

2m−1 + · · ·+ a1x+ a0 = 0. (68)

If such an equation is multiplied by 1
xm , then after an adjustment we obtain

a0

(
xm + 1

xm

)
+a1

(
xm−1 + 1

xm−1

)
+ · · ·+am−1

(
x+ 1

x

)
+am = 0. (69)

Let us use the substitution

x+ 1
x

= y. (70)
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By gradually powering and adjusting (70) we obtain

x2 + 1
x2 = y2 − 2,

x3 + 1
x3 = y3 − 3y,

x4 + 1
x4 = y4 − 4y2 + 2,

...

After substituting these expressions into (69) we obtain an equation of degree
m:

bmy
m + · · ·+ b0 = 0. (71)

After solving it (if we can) and after substituting its roots into (70) we finish
the task by solving the m quadratic equations over C. Their solutions are
the solutions of the original equation (68).

Example 24.10. We find all roots of the polynomial function

f(x) = x6 + 2x5 − 2x4 + 2x2 − 2x− 1 (72)

over C.
The polynomial f(x) is negatively reciprocal. Hence the function f has the

number 1 as its root, thus

f(x) = (x− 1)g(x),

where
g(x) = x5 + 3x4 + x3 + x2 + 3x+ 1

is a positively reciprocal polynomial of an odd degree. This means that the
function g has −1 as its root. Hence

g(x) = (x+ 1)h(x),

where
h(x) = x4 + 2x3 − x2 + 2x+ 1

is a positively reciprocal polynomial of an even degree. So it remains to solve
the positively reciprocal equation

x4 + 2x3 − x2 + 2x+ 1 = 0. (73)
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If we multiply this equation with 1
x2 and adjust it, we get(

x2 + 1
x2

)
+ 2

(
x+ 1

x

)
− 1 = 0.

By using the substitution y = x+ 1
x we obtain the quadratic equation

y2 + 2y − 3 = 0, (74)

which has roots y1 = 1 and y2 = −3. Hence for x we have

x+ 1
x

= 1, x+ 1
x

= −3,

which yields two quadratic equations

x2 − x+ 1 = 0, x2 + 3x+ 1 = 0.

By solving them we obtain all solutions of the equation (73):

x1,2 = 1± i
√

3
2 , x3,4 = −3±

√
5

2 .

The polynomial function (72) thus has these roots:

1, −1, ,
1 + i

√
3

2 ,
1− i

√
3

2 ,
−3 +

√
5

2 ,
−3−

√
5

2 .

�

The substitution y = x+ 1
x enables us to diminish the degree of a positively

reciprocal equation of an even degree to its half and so to transfer the problem
of solving the reciprocal equation over the field C into a problem of solving an
another equation over C. However, in general it is possible to aim for solving
algebraically over the field C positively reciprocal equations of degrees at
most nine (as they have −1 as a root) and negatively reciprocal equations of
degrees at most ten (they have 1 and −1 as their roots).

Exercises.

Exercise 24.1. Solve the equation x4 + x2 + 1 = 0 over C as
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(a) a biquadratic equation;

(b) a reciprocal equation.

Exercise 24.2. Solve the equation x5 − 1 = 0 over C as

(a) a binomial equation;

(b) a reciprocal equation.

Exercise 24.3. Solve the equations over C:

(a) x4 − 2x3 − x2 − 2x+ 1 = 0;

(b) x4 + 2x3 + x2 + 2x+ 1 = 0;

(c) x6 + x4 + x2 + 1 = 0;

(d) 4x6 + x4 + x3 + x2 − 3x+ 1 = 0.

25 Numerical methods for solving algebraic equations

As demonstrated so far, by algebraic methods we can solve only certain types
of algebraic equations such as all binomial equations, all equations of degrees
at most four and all reciprocal equations of degrees up to ten. However, in
general there are no algorithms for finding all solutions of algebraic equations
of degree more than four.
Nevertheless, for all algebraic equations there have been many numerical

methods developed which give algorithms for calculating all solutions with an
almost arbitrarily small error prescribed in advance. Some of these methods
can be used both for algebraic equations f(x) = 0 as well as for equations of
the form f(x) = g(x) where f, g ∈ R〈x〉 are real functions of a real variable
x. These methods are used also in the computer software Mathematica - A
System for Doing Mathematics by Computer. In Chapter 5.2 of [10] one can
read:
If equations contain only linear functions or polynomial functions of small

degrees, we can use for their numerical solutions the tool NSolve, which does
not require putting a starting value and can calculate all solutions. Yet if the
equation contains more complicated functions, then to solve, the system Math-
ematica must search for a numerical method for solving non-linear equations.
Here we must use the tool FindRoot, in which we always put a starting value
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of the variable. Even if the equation has several solutions, the tool FindRoot
always returns only one solution, namely the one it finds as the first one. If
we want to find further solutions, we must change the starting value of the
variable. The tool FindRoot is able to find also a complex root if the starting
value of the variable is a complex number. If we provide only one starting
value of the variable, FindRoot uses the Newton method for finding the root.
If we provide two starting values of the variable, FindRoot uses the bisection
method.1 Both methods are very sensitive with respect to the starting value(s)
of the variable. When choosing bad starting value(s) of the variable, too far
from a root, the methods will be divergent.
In this chapter we briefly present the background for two methods, the

Newton method and the secant method. As usually, the set of all points in
the plane whose coordinates x, y satisfy the equation y = f(x) will be called
the graph of the function f(x).
We assume that in the interval [a, b] there is exactly one root c of the

function f(x) and that in this interval the function is either increasing or
decreasing and that it is convex or concave. For example, let the function f(x)
be increasing in the interval [a, b] (i.e. for every x ∈ [a, b] we have f ′(x) > 0)
and convex (i.e. for every x ∈ [a, b] we have f ′′(x) > 0). We construct a
tangent to the graph of f at the point B = (b, f(b)) (see Figure 25.1). The
intersection of this tangent with the x-axis is a point (b1, 0). For the slope
(gradient) of tangent line we have

Figure 25.1

1We explain a related secant method.
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f ′(b) = f(b)
b− b1

,

from which it follows that

b1 = b− f(b)
f ′(b) .

If we again construct a tangent to the graph of f at the point (b1, f(b1)), then
analogously for the coordinate b2 of the intersection (b2, 0) of the tangent with
the x-axis we obtain

b2 = b1 −
f(b1)
f ′(b1) .

This procedure is repeated and we get a sequence (in this case decreasing)

b0, b1, b2, . . .

where

b0 = b, bk+1 = bk −
f(bk)
f ′(bk) , k ∈ N, (75)

which can be shown to converge to the root c of the function f(x).
This method of finding a root (more precisely, its approximate value) is

called Newton’s method or the method of tangents. (It is also sometimes
called the Newton-Raphson method.) Notice that it is necessary to choose
the endpoint of an interval in which we start to construct the tangent. It
is that endpoint of the interval [a, b] in which the values of a given function
and of its second derivative have the same sign (in our case it has been
the endpoint b). The next example illustrates when the described Newton’s
method may fail.2

2We are indebted to prof. G. Jones for this example and Figure 25.2.
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x

y

x1

x2
x3

y = x1/3

Figure 25.2

Example 25.1. We show that if f and f ′′ have opposite signs then Newton’s
method may fail, either by oscillating between two approximations either side
of the root, or by diverging away from the root.
We consider the function f(x) = x

1
3 , or more generally, f(x) = x

1
k for odd

k ≥ 3. A simple calculation (we leave it as an exercise for the reader) shows
that

xn+1 = −2xn or more generally, xn+1 = (1− k)xn.

So successive approximations oscillate away from the unique root at 0 (see
Figure 25.2).
Of course, no one would try to solve x1/k = 0 by this method, but it is easy

to believe that if a function has a similar graph then the presented method
will fail. �

The second method for calculating the approximate value of the root c is the
secant method, or false position method (known also as regula falsi method).
Let us construct the line joining the points A = (a, f(a)) and B = (b, f(b)).
This line intersects the x-axis at a point (a1, 0). The slope (gradient) of this
line is (see Figure 25.3)
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Figure 25.3

k = f(b)− f(a)
b− a

.

If we express it via the points (a, f(a)) and (a1, 0), then we have

k = 0− f(a)
a1 − a

= −f(a)
a1 − a

,

hence
−f(a)
a1 − a

= f(b)− f(a)
b− a

.

After adjustments we obtain

a1 = a− b− a
f(b)− f(a) · f(a).

Similarly, the line joining the points A1 = (a1, f(a1)) and B intersects the
x-axis at a point (a2, 0), where

a2 = a1 −
b− a1

f(b)− f(a1) · f(a1).

If we repeat this procedure, we get the sequence (in this case an increasing
one)

a0, a1, a2, . . .
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where
a0 = a, ak+1 = ak −

b− ak
f(b)− f(ak) · f(ak), k ∈ N, (76)

which can be shown to converge to the root c of the function f(x).
We also proceed analogously in other cases when the given function is in-

creasing and concave or is decreasing and convex or is decreasing and concave
(sketch these three cases separately).

1 2 3

−2

2

4

6

8

x

y

Figure 25.4

Example 25.2. We find an approximate value of the positive root of the
polynomial function f(x) = x2 − 2 (i.e. an approximate value of the number√

2) by both the Newton and the secant methods.
We know this value quite well (the approximate value of

√
2 expressed to

eight decimal places is 1.41421356). So we shall be able to compare how
quickly we obtain this value by the applied methods. For the calculation we
use the ‘table editor’ Excel.
Consider for example the interval [0.5, 2.5] in which the given function is

increasing and convex and in which its positive root lies (see Figure 25.4). In
the Table 25.1 we present the values

b = b0 = 2.5, b1, b2, . . . , b16

for the Newton method and the values

a = a0 = 0.5, a1, a2, . . . , a16

for the secant method (in both cases we stopped when both algorithms gave
successive approximations agreeing in the first eight decimal places). In our
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case (75) has the form

b0 = b = 2.5, bk+1 = bk −
b2
k − 2
2bk

, k ∈ N

and (76) has the form

a0 = a = 0.5, ak+1 = ak −
2.5− ak
6.25− a2

k

· (a2
k − 2), k ∈ N

(verify it in detail).
One can show (in this particular case we see it from the table) that the

Newton method is faster than the secant method. For every i ∈ {1, 2, . . . , 16}
we have determined the interval [ai, bi] in which the root lies, that is, we know
the root with a maximal error bi − ai (it is also given in Table 25.1). �

Iteration Newton method Secant method Difference
i bi ai |ai − bi|
0 2,50000000 0,50000000 2,00000000
1 1,65000000 1,08333333 0,56666667
2 1,43106061 1,31395349 0,11710712
3 1,41431273 1,38567073 0,02864200
4 1,41421357 1,40623774 0,00797583
5 1,41421356 1,41199659 0,00221698
6 1,41421356 1,41359823 0,00061533
7 1,41421356 1,41404285 0,00017072
8 1,41421356 1,41416620 0,00004736
9 1,41421356 1,41420043 0,00001314
10 1,41421356 1,41420992 0,00000364
11 1,41421356 1,41421255 0,00000101
12 1,41421356 1,41421328 0,00000028
13 1,41421356 1,41421348 0,00000008
14 1,41421356 1,41421354 0,00000002
15 1,41421356 1,41421356 0,00000001
16 1,41421356 1,41421356 0,00000000

Table 25.1

If we use the software Mathematica for finding the roots, we can depict the
graph of a given function and find the roots for instance via the commands
NSolve or FindRoot mentioned above. In doing so, it is useful to know an
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interval containing all real roots of a given function. In case of a polynomial
function one can utilise the following statement.

Lemma 25.3. Let f(x) be a polynomial with real coefficients and let c be
a positive real number. If all the coefficients in its Taylor series (see Theo-
rem 20.11 and Example 20.12)

f(x) = b0 + b1(x− c) + · · ·+ bn(x− c)n

near c are positive, then every real root of the polynomial function f is less
than c.

Proof. If x ≥ c then obviously f(x) > 0, which means that there is no root
of f greater than or equal to c.

Example 25.4. Using the software Mathematica we depict the graph of the
polynomial function

f(x) = 11x6 − 7x5 − 10x4 + 29x3 − 26x2 + 9x− 1 (77)

and we find its real roots. We first find an interval containing all real roots
of a given function. Using Horner’s method we find the Taylor series of the
polynomial f(x) near 1. We obtain

f(x) = 11(x−1)6+59(x−1)5+120(x−1)4+139(x−1)3+96(x−1)2+35(x−1)+5.

By Lemma 25.3 all the roots of the polynomial function f are less than 1.
A lower bound for real roots of the polynomial function f is found if we
substitute x = −y into (77). We get the polynomial

g(y) = f(−y) = 11y6 + 7y5 − 10y4 − 29y3 − 26y2 − 9y − 1. (78)

We find an upper bound c for the real roots of the polynomial function
(78). The number −c is then obviously a lower bound for the real roots of
the polynomial function (77). By a straightforward calculation we obtain
g(1) = −57. By Horner’s method we find that g(2) = 413 (see Table 25.2).

11 7 −10 −29 −26 −9 −1
22 58 96 134 216 414

11 29 48 67 108 207 413

Table 25.2
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Since all the numbers in the last row are positive, the coefficients

b0 = g(2), b1, b2, b3, b4, b5, b6

of the Taylor series of the polynomial g(y) near 2 are also positive, which
means (by Lemma 25.3) that the number 2 is an upper bound for the roots of
the polynomial function (78) and hence the number −2 is obviously a lower
bound for the roots of the polynomial function (77). All real roots of the
polynomial function (77) thus lie in the interval [−2, 1]. If we depict the
graph of this polynomial function via the system Mathematica for instance in
the interval [−2, 2] (see Figure 25.5), we see that at least one of the roots lies
in the interval [−2,−1.5]. How to separate the other roots, i.e. to determine
the intervals in which exactly one root lies, cannot yet be seen from the given
figure. If we depict the graph of this function for instance in the interval
[−0.1, 0.8] (see Figure 25.6) we see that one of the other roots lies in the
interval [0.2, 0.3], the next one in the interval [0.4, 0.5] and the last one in the
interval [0.6, 0.7]. Thus we have found four real roots. Since f(x) has degree
6, exactly two roots are imaginary.

(a) If in Mathematica we use the command

FindRoot[f [x] == 0, {x, b0}],

for the polynomial function (77), then Mathematica finds the root via the
Newton method and it uses as the starting value the number b0. For b0 = 0.7
we get the root x = 0.618034 as the output:

FindRoot[f [x] == 0, x, 0.7],

x -> 0.618034.

(b) If in Mathematica we use the command

FindRoot[f [x] == 0, {x, {a0, b0}}],

then Mathematica finds the root via the secant method and it uses as the
starting values a0 and b0. For a0 = 0.6, b0 = 0.7 we get x = 0.618033 as the
output:

FindRoot[f [x] == 0, x, 0.6, 0.7],

x -> 0.618033.
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(c) In a simple case as is for Mathematica our polynomial function (77),
Mathematica is able to find the roots via the command NSolve without giving
some starting values and it will present also the imaginary roots. In this case
we obtain as the output the following:

NSolve[f [x] == 0, x],

x -> -1.61803, x -> 0.216542, x -> 0.419821,

x -> 0.5 - 0.866025 I, x -> 0.5 + 0.866025 I, x -> 0.618034.

Hence the roots of the polynomial function f(x) given in (77) are (correct
to six decimal places):

x1 = −1.61803, x2 = 0.216542, x3 = 0.419821, x4 = 0.618034,

x5 = 0, 5− 0.866025 i, x6 = 0, 5 + 0.866025 i.

�
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Exercises.

Exercise 25.1. Solve the following equation in Mathematica using the com-
mand NSolve:

x2 + 7x− 3 = 0.

Exercise 25.2. Solve the following equation in Mathematica using the com-
mand NSolve:

x5 + 7x+ 1 = 0.

Exercise 25.3. Solve the following equation in Mathematica using the com-
mand NSolve:

x4 + 3x− 1 = 0.

Exercise 25.4. Solve the following equation in Mathematica using the com-
mand NSolve:

x5 − 2x+ 3 = 0.



Part IV

Answers or solutions to exercises

Chapters 14-25 (Veronika Remenárová)

14 Polynomials in one indeterminate

Exercise 14.1: We shall utilize Theorem 14.2. Let (A′,+, ·) be a commuta-
tive ring with unit element and let (A,+, ·) be a subring which contains the
unit 1A′ . Let t ∈ A′ −A, then

〈A ∪ {t}〉 = {a0 + a1t+ · · ·+ ant
n | a0, a1, . . . , an ∈ A,n ∈ N}.

(a) We want to prove that 〈Q ∪ {
√

8}〉 = 〈Q ∪ {
√

2}〉.
(i) First, we need to proveQ[

√
8] ⊆ Q[

√
2].We show x ∈ Q[

√
8]⇒ x ∈ Q[

√
2] :

x ∈ Q[
√

8]⇒ x = a0 + a1
√

8 = a0 + 2a1
√

2; a0, 2a1 ∈ Q⇒ x ∈ Q[
√

2].
(ii) Second, we prove Q[

√
2] ⊆ Q[

√
8] by showing x ∈ Q[

√
2] ⇒ x ∈ Q[

√
8] :

x ∈ Q[
√

2] ⇒ x = a0 + a1
√

2 = a0 + 2
2a1
√

2 = a0 + 1
2a12
√

2 = a0 +
1
2a1
√

8; a0,
1
2a1 ∈ Q⇒ x ∈ Q[

√
8]. From (i) and (ii), Q[

√
8] = Q[

√
2].

(b) We show that Z
[√

8
]
( Z

[√
2
]
. We start by inspecting the inclusion (i)

Z
[√

8
]
⊆ Z

[√
2
]
. Equivalently, x ∈ Z

[√
8
]
⇒ Z

[√
2
]

: x = a0 + a1
√

8 =
a0 + 2a1

√
2, a0, 2a1 ∈ Z ⇒ x ∈ Z

[√
2
]
. Then we inspect the reverse in-

clusion (ii) Z
[√

2
]
⊆ Z

[√
8
]
, equivalently, x ∈ Z

[√
2
]
⇒ Z

[√
8
]

: x =
a0 + a1

√
2 = a0 + a1

2
√

8, a0 ∈ Z but a1
2 does not have to belong to Z. A

counterexample might be x =
√

2 = 1
2
√

8 where 1
2 /∈ Z. We have x ∈ Z

[√
2
]

but x /∈ Z
[√

8
]
and so Z

[√
2
]
6= Z

[√
8
]
.

(c) We show thatQ
[
1 +
√

3
]

= Q
[
1−
√

3
]
.We firstly show (i)Q

[
1 +
√

3
]
⊆

Q
[
1−
√

3
]
. Equivalently, x ∈ Q

[
1 +
√

3
]
⇒ x ∈ Q

[
1−
√

3
]

: x = a0 +
a1(1 +

√
3) = a0 +a1 +a1

√
3 = a0 +a1− (−a1)

√
3 = a0−a1(1−

√
3) + 2a1 =

(a0 + 2a1)− a1(1−
√

3), a0 + 2a1,−a1 ∈ Q⇒ x ∈ Q
[
1−
√

3
]
. The second

inclusion is (ii) Q
[
1−
√

3
]
⊆ Q

[
1 +
√

3
]
. Equivalently, x ∈ Q

[
1−
√

3
]
⇒

x ∈ Q
[
1 +
√

3
]

: x = a0+a1(1−
√

3) = a0+a1−a1
√

3 = a0+a1+(−a1)
√

3 =
a0 − a1(1 +

√
3) + 2a1 = (a0 + 2a1)− a1(1 +

√
3), here a0 + 2a1,−a1 ∈ Q⇒

x ∈ Q
[
1 +
√

3
]
. From (i) and (ii), Q

[
1 +
√

3
]

= Q
[
1−
√

3
]
.

Exercise 14.2: The procedure is analogous to that in Exercise 14.1.

343
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Exercise 14.3: (a) Q
[√

3
]

= {a + b
√

3 | a, b ∈ Q} : First, we denote
{a+ b

√
3 | a, b ∈ Q} as B. We want to prove that B is a ring. Let us have

x, y ∈ B, x = a + b
√

3, y = c + d
√

3. The difference of the two elements
is x − y = (a − c) + (b − d)

√
3 ∈ B. The multiplication of the two elements

is x · y = ac + ad
√

3 + bc
√

3 + 3bd = (ac + 3bd) + (ad + bc)
√

3 ∈ B. We
continue by proving that Q

[√
3
]
⊆ B. So x ∈ 〈Q ∪ {

√
3}〉 ⊆ B. If x ∈ Q,

then x = x+ 0
√

3 + · · ·+ 0(
√

3)n ⇒ x ∈ B. If x ∈ {
√

3}, then x = 0 + 1
√

3 +
0(
√

3)2 + · · ·+ 0(
√

3)n ⇒
√

3 ∈ B. So we have x ∈ B,
√

3 ∈ B, which implies
x ∈ Q ∪ {

√
3} ⊆ B. Thus 〈Q ∪ {

√
3}〉 ⊆ B.

The procedure in (b), (c), (d) is analogous.
Exercise 14.4: The procedure is analogous to that in Exercise 14.1.
Exercise 14.5: The procedure is analogous to that in Exercise 14.1.
Exercise 14.6: (a)

√
5 + 1 = t |2; 6 + 2

√
5 = t2; 2

√
5 = t2 − 6 |2; t4 −

12t2 + 16 = 0; (
√

5 + 1)4 − 12(
√

5 + 1)2 + 16 = 0. There are non-zero coef-
ficient, and they are from Z, so

√
5 + 1 is an algebraic number. (b) 2− 3i =

t |2; −12i = t2+5 |2; t4+10t2+169 = 0; (2−3i)4+10(2−3i)2+169 = 0.
It is an algebraic number. (c) (

√
3 +
√

2)4 − 10(
√

3 +
√

2)2 + 1 = 0. It is an
algebraic number. (d) (

√
2 +
√

2)4− 4(
√

2 +
√

2)2 + 2 = 0. It is an algebraic
number. (e) 3(

√
3 + 1√

3 )4 − 16 = 0. It is an algebraic number over Z. (f)
(
√

5 + 4
√

5)8 − 20(
√

5 + 4
√

5)6 + 140(
√

5 + 4
√

5)4 − 530(
√

5 + 4
√

5)2 + 400 = 0.
It is an algebraic number over Z.
Exercise 14.7: It is a set {a0 + a1

4
√

2 + · · ·+ ar( 4
√

2)2 | a0, a1, . . . , ar ∈ Q;
0, 1, 2, . . . , n ∈ N}.
Exercise 14.8: The rings Q[

√
2] and Q[

√
3] are not isomorphic.

15 Polynomial function of one variable

Exercise 15.1: f(x) = (72i
√

3− 48i
√

2)x3 + (−16i
√

3 + 36i
√

2)x.
Exercise 15.2: (a) Let the polynomial function f be as follows: f(x) =
a0+a1x+a2x

2+a3x
3. By substituting respective numbers into the polynomial

function we get four equations

f(0) = a0 = 5,
f(−1) = 5− a1 + a2 − a3 = 6,
f(1) = 5 + a1 + a2 + a3 = 4,
f(2) = 5 + 2a1 + 4a2 + 8a3 = 9.

The solution may be easily found and it is f(x) = 5− 2x+ x3.
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(b) Let us have the polynomial function g, g(x) = a0 + a1x. Note that a0
and a1 are now in the form of complex numbers, i.e. a+ bi.

g(0) = a0 = 1− i,
g(1 + i) = 1− i+ a1(1 + i) = 1− i+ a1 + a1i = 1 + i,

g(1− i) = 1− i+ a1(1− i) = 1− i+ a1 − a1i = 3− i.

From the last two rows we get 2a1i = −2+2i, so a1 equals 1+ i. The solution
is g(x) = 1− i+ (1 + i)x.
Exercise 15.3: By comparing the function values of each of the six functions
in the points 0, 1 and 2 we find out that f1 is equal to f2, f4 is equal to f6.
Exercise 15.4:
(a) In R[x]: f(x) + g(x) = 6 + 4x+ 7x2 + 7x3 + 3x4,
f(x) · g(x) = 8 + 10x+ 27x2 + 35x3 + 27x4 + 32x5 + 25x6 + 6x7.
(b) In Z7[x]: f(x) + g(x) = 6 + 4x+ 3x4,
f(x) · g(x) = 1 + 3x+ 6x2 + 6x4 + 4x5 + 4x6 + 6x7.
(c) In Z6[x]: f(x) + g(x) = 4x+ x2 + x3 + 3x4,
f(x) · g(x) = 2 + 4x+ 3x2 + 5x3 + 3x4 + 2x5 + x6.

Exercise 15.5: Let F = Z2 = {0, 1}. We show that the sets
ZZ2

2 = {f : Z2 → Z2; f − function} and
Z2〈x〉 of polynomial functions over Z2 are the same:
ZZ2

2 : f0 = {[0, 0], [1, 0]}, so f0(x) = 0 + 0x+ 0x2 + · · ·+ 0xn = 0,
f1 = {[0, 1], [1, 0]}, so f1(x) = 1 + 0x+ 0x2 + · · ·+ 0xn = 1,
f2 = {[0, 0], [1, 1]}, so f2(x) = 0 + 1x+ 0x2 + · · ·+ 0xn = x,
f3 = {[0, 1], [1, 1]}, so f3(x) = 1 + 1x+ 0x2 + · · ·+ 0xn = 1 + x.

Clearly, Z2〈x〉 ⊆ ZZ2
2 and we showed the equality (instead of ⊆) by expressing

each f ∈ ZZ2
2 as a polynomial function, i.e. an element of Z2〈x〉.

An alternative way of showing that ⊆ is = would be the cardinality argument:
evidently |ZZ2

2 | = 4 an so it suffices to find four different elements of Z2〈x〉:
those are e.g. 0, 1, x, 1 + x.

Exercise 15.6: Z2[x] = a0 + a1x+ a2x
2 + a3x

3; a0, a1, a2, a3 ∈ Z2
degree 0 f(x) = a0, a0 ∈ Z2

f1(x) = 0, f2(x) = 1,
degree 1 f(x) = a0 + a1x, a0, a1 ∈ Z2

f3(x) = x, f4(x) = 1 + x,
degree 2 f(x) = a0 + a1x+ a2x

2, a0, a1, a2 ∈ Z2
f5(x) = x2, f6(x) = x+x2, f7(x) = 1+x2, f8(x) = 1+x+x2,

degree 3 f(x) = a0 + a1x+ a2x
2 + a3x

3, a0, a1, a2, a3 ∈ Z2
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f9(x) = x3, f10(x) = x2 + x3, f11(x) = x+ x3,
f12(x) = 1 + x3, f13(x) = x+ x2 + x3, f14(x) = 1 + x2 + x3,
f15(x) = 1 + x+ x3, f16(x) = 1 + x+ x2 + x3.

You can notice that the number of polynomials in the ring Z2[x] of degree at
most zero is 2, at most one is 4 (those of degree zero plus of degree one), at
most two is 8, at most three is 16 and so forth, so the numbers are 2, 4, 8,
16, 32, 64, 128, . . . There exist in general exactly 2k+1 (k ∈ N+) polynomials
of degree at most k in the ring Z2[x].

16 Divisibility of polynomials

Exercise 16.1:
(a) q(x) = x + 9, r(x) = 66x2 + 66, (b) q(x) = x − 8, r(x) = 1, (c)

q(x) = x3−2x2+7x−5, r(x) = 0, (d) q(x) = x3+(6−i)x−2−10i, r(x) =
(−6+ i)x−36i−6, (e) q(x) = 5

7x
2 + 4

7x−
10
49 , r(x) = x3 + 181

49 x
2 + 12

49x+ 69
49 .

Exercise 16.2:
(a) q(x) = 2x2+2x+2, r(x) = 1, (b) q(x) = 2x2+4x, r(x) = x2+3x+2,

(c) q(x) = x2 + 3x+ 3, r(x) = 4x2, (d) q(x) = 2x+ 2, r(x) = 0.
Exercise 16.3: (a) a = −1, b = −6, (b) a = −50, b = −10.
Exercise 16.4: (a) [a, b, c] = {[−4,−1,−1], [−14, 5, 1], [−2, 1,−3], [0, 3, 3]},
(b) [a, b, c] = {[−2,−2,−1], [2, 2, 1]}.
Exercise 16.5: (a) gcd(f(x), g(x)) ∼ x2 + 1, (b) gcd(f(x), g(x)) ∼ 2,
(c) gcd(f(x), g(x)) ∼ x+ 1, (d) gcd(f(x), g(x)) ∼ x2 + 3x+ 2,
(e) gcd(f(x), g(x)) ∼ x2 − 2x+ 2.
Exercise 16.6: (a) gcd(f(x), g(x)) ∼ −1, (b) gcd(f(x), g(x)) ∼ −2x+ 3.
Exercise 16.7: a = −3, b = 2.

17 Decomposition of polynomials

Exercise 17.1: Let us compute a discriminant of x2 + 4 = 0.
The discriminant D = −16 is negative, the polynomial is irreducible in R[x].
Exercise 17.2: (a) (x2 +

√
2x+ 1)(x2 −

√
2x+ 1). Hint: Find the complex

roots of the polynomial (there are obviously 4 such roots), and multiply two
and two in decomposition, in order to get rid of complex parts of the roots.
(b) (x2 +

√
3x+ 1)(x2−

√
3x+ 1). Hint: Decompose the polynomial as in the

previous case, or utilize the fact that the cubic element is missing, i.e. the
decomposition in such case looks like (x2 + ax+ b)(x2 − ax+ c).
Exercise 17.3:
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gcd(f(x), g(x)) = x2 + 2x+ 4, lcm(f(x), g(x)) = (x− 2)(x2 + 2x+ 4)(x−
1)(x+ 1).
Exercise 17.4:
gcd(f(x), g(x)) = x+ i, lcm(f(x), g(x)) = (x+ 1)(x+ i)2(x− i)2.

18 Roots of polynomial functions

Exercise 18.1: (a) q(x) = 2x4 + 5x3 − 8x2 − 8x+ 23, r(x) = 8,
(b) q(x) = 2x4 − 3x3 − 4x2 + 12x− 5, r(x) = 0.
Exercise 18.2: k = 3

3 −16 25 −6 −4 −8

2 6 −20 10 8 8

3 −10 5 4 4 0

2 6 −8 −6 −4

3 −4 −3 −2 0

2 6 4 2

3 2 1 0

2 6 16

3 8 17 6= 0

Exercise 18.3:
(a) f(−2) = (−2)7 + 2(−2)6 + (−2)4 − 5(−2)3 + 3(−2)2 + 1 = 69
(b)

1 2 0 1 −5 3 0 1

−2 −2 0 0 −2 14 −34 68

1 0 0 1 −7 17 −34 69

Exercise 18.4:
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(a) (x+ 3) | (x3 + 2x2 + ax+ 24), i.e. −3 is a root

(−3)3 + 2(−3)2 + a(−3) + 24 = 0
15− 3a = 0

a = 5

(b)

1 2 a 24

−3 −3 3 −9− 3a

1 −1 3 + a −3a+ 15

⇒ a = 5

Exercise 18.5:

1 2− 2i 0 1 + i −(1 + i) 0 2i

−1 + i −1 + i 2i −2− 2i 2 2i −2− 2i

1 1− i 2i −1− i 1− i 2i −2

q(x) = x5 + (1− i)x4 + 2ix3 − (1 + i)x2 + (1− i)x+ 2i, r(x) = −2.
Exercise 18.6: a = 11, b = −32. Hint: Find the roots of the polynomial
x2 − 4x+ 3, and substitute them one by one to the given polynomial.
Exercise 18.7: [a, b, c] = {[3,−6,−28]}. Hint: Proceed by Horner’s scheme
and then solve the system of three linear equations in three variables a,b,c.

19 Polynomials with complex, real and integer coefficients

Exercise 19.1: The roots of the given polynomial function are 1 + i, 1− i,
−1−

√
3, −1 +

√
3. Hint: Begin with the utilization of the Theorem 19.3.

Exercise 19.2: f(x) = x5 − 2x4− x3 + 8x2 − 10x+ 4. Hint: Have in mind
the Theorem 19.3.
Exercise 19.3: (a) Rational roots are −2,− 1

2 , 1. (b) Rational roots are
1, 2, 3. (c) Rational root is a 2-root − 1

2 .

Exercise 19.4: 16x4 − 8x+ 3 = 16(x− 1
2 )2(x+ 1

2 +
√

2i
2 )(x+ 1

2 −
√

2i
2 ).
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20 Derivatives of polynomials

Exercise 20.1: For a = 9 the third root is −1, and for a = − 13
27 it is 13

3 .

Exercise 20.2: g(x) = 1− (x+ 3)3 + (x+ 3)4.

Exercise 20.3: h(x) = x4 − 4x3 + 6x2 + 2x+ 8.

21 Polynomials in several indeterminates

Exercise 21.1: (a) 13, (b) −2, (c) 30.
Exercise 21.2: (a) x3−8x2+21x−17, (b) x3−x2−2x−1, (c) x3−4x2+5x−3,
(d) x3 − 2x2 + 5x− 1.
Exercise 21.3: (a) [x, y] = {[−1, 2]}, (b) [x, y] = {[2, 3], [−3,−2]}, (c)
[x, y, z] = {[−3,−1, 1]}, (d) [x, y, z] = {[−1, 1, 2]}.

22 Solving binomial equations

Exercise 22.1: (a) x0 = 1, x1 = 1
2 +

√
3

2 i, x2 = − 1
2 +

√
3

2 i, x3 = −1, x4 =
− 1

2 −
√

3
2 i, x5 = 1

2 −
√

3
2 i, (b) x0 = 1

2 , x1 = 1
2 i, x2 = − 1

2 , x3 = − 1
2 i, (c) x0 =√

5, x1 =
√

10
2 +

√
10
2 i, x2 =

√
5i, x3 = −

√
10
2 +

√
10
2 i, x4 = −

√
5, x5 = −

√
10
2 −√

10
2 i, x6 = −

√
5i, x7 =

√
10
2 −

√
10
2 i, (d) x0 =

√
3

2 + 1
2 i, x1 = −

√
3

2 + 1
2 i, x2 = −i.

Exercise 22.2: (a) f(x) = (x2 − x+ 1)(x2 + x+ 1)(x+ 1)(x− 1),
(b) f(x) = (x2+

√
2 +
√

2x+1)(x2−
√

2 +
√

2x+1)(x2+
√

2−
√

2x+1)(x2−√
2−
√

2x+ 1), (c) f(x) = (x2 + 4
√

8x+
√

2)(x2 − 4
√

8x+
√

2).

23 Quadratic and cubic equations over C

Exercise 23.1: (a) x1 = 3− i, x2 = −1 + 2i, (b) x1 = 1− i, x2 = 4
5 −

2
5 i, (c)

x1 = 3− 2i, x2 = 3− 2i.
Exercise 23.2:
(a) x4 − 3x2 + 4 = (x−

√
7

2 −
1
2 i)(x+

√
7

2 + 1
2 i)(x−

√
7

2 + 1
2 i)(x+

√
7

2 −
1
2 i),

(b) x4 − 3x2 + 4 = (x2 −
√

7x+ 2)(x2 +
√

7x+ 2).
Exercise 23.3: x4 + 6x3 + 9x2 + 100 = (x2 − 2x+ 5)(x2 + 8x+ 20)
Exercise 23.4: The polynomial may be firstly decomposed as a product of
two quadratics, moreover the cubic term is missing so try to solve (x2 + ax+
b)(x2 − ax+ c) = x4 + 2x2 − 24x+ 72. From there we have that bc = 72 and
a(b − c) = 24. So we want to factor 72 as a product of two numbers whose
difference divides 24. Surveying the options, we find out b = 12, c = 6, so
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a = 4. From the factorization (x2 + 4x + 12)(x2 − 4x + 6) we may quickly
find all the roots of the polynomial and those are x1 = −2 + 2

√
2i, x2 =

−2− 2
√

2i, x3 = 2 +
√

2i, x4 = 2−
√

2i.
Exercise 23.5: (a) x1 = 1, x2 = 4 + 2

√
3i, x3 = 4 − 2

√
3i, (b) x1 = 2

√
3 −

1, x2 = −1− 2
√

3, x3 = 2, (c) x1 = −2, x2 = 1 + 2i.x3 = 1− 2i.

24 Reciprocal equations

Exercise 24.1:
(a) Proceed by substitution z = x2 and then solve as a quadratic equation.
(b) It is a positively reciprocal equation of even degree. In the first step,
multiply the equation by 1

x2 and then follow by substitution to find the roots.
x1 = 1

2 +
√

3
2 i, x2 = 1

2 −
√

3
2 i, x3 = − 1

2 +
√

3
2 i, x4 = − 1

2 −
√

3
2 i.

Exercise 24.2: (a) Proceed by de Moivre’s Theorem to get all five roots.
They form the regular pentagon inscribed in circle with radius of one.
(b) It is a negatively reciprocal equation of odd degree, i.e. the first known
root is one. Then proceed, for instance, by Horner’s scheme to divide the
polynomial by x − 1, and you get the positively reciprocal equation of even
degree. x1 = 1, x2 = −1+

√
5

4 +
√

5+
√

5
8 i, x3 = −1+

√
5

4 −
√

5+
√

5
8 i, x4 = − 1+

√
5

4 +√
5−
√

5
8 i, x5 = − 1+

√
5

4 −
√

5−
√

5
8 i.

Exercise 24.3: (a) x1 = 3
2 +

√
5

2 , x2 = 3
2 −

√
5

2 , x3 = 1
2 +

√
3

2 i, x4 = 1
2 −√

3
2 i, (b) x1 = −1+

√
2

2 +
√

1+2
√

2
2 i, x2 = −1+

√
2

2 −
√

1+2
√

2
2 i, x3 = −1−

√
2

2 +√
−1+2

√
2

2 i, x4 = −1−
√

2
2 −

√
−1+2

√
2

2 i, (c) x1 = i, x2 = −i, x3 = −
√

2
2 +

√
2

2 i, x4 = −
√

2
2 −

√
2

2 i, x5 =
√

2
2 +

√
2

2 i, x6 =
√

2
2 −

√
2

2 i, (d) x1 = 1
2 , x2 = 1

2 , x3 =
−1+

√
5

4 +
√

5+
√

5
8 i, x4 = −1+

√
5

4 −
√

5+
√

5
8 i, x5 = − 1+

√
5

4 +
√

5−
√

5
8 i, x6 =

− 1+
√

5
4 −

√
5−
√

5
8 i.

25 Numerical methods for solving algebraic equations

Exercise 25.1:

>> NSolve[x^2 + 7 x - 3 == 0, x]
{{x -> -7.40512}, {x -> 0.405125}}

Exercise 25.2:
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>> NSolve[x^5 + 7 x + 1 == 0, x]
{{x -> -1.11308 - 1.15173 I}, {x -> -1.11308 + 1.15173 I},
{x -> -0.142849}, {x -> 1.1845 - 1.15139 I},
{x -> 1.1845 + 1.15139 I}}

Exercise 25.3:

>> NSolve[x^4 + 3 x - 1 == 0, x]
{{x -> -1.53961}, {x -> 0.329409}, {x -> 0.605102 - 1.26713 I},
{x -> 0.605102 + 1.26713 I}}

Exercise 25.4:

>> NSolve[x^5 - 2 x + 3 == 0, x]
{{x -> -1.42361}, {x -> -0.246729 - 1.32082 I},
{x -> -0.246729 + 1.32082 I}, {x -> 0.958532 - 0.498428 I},
{x -> 0.958532 + 0.498428 I}}
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