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Abstract 

This report is a short summary of the original article by HADARIOVÁ et al. (2017) entitled “An intact plastid 

genome is essential for the survival of colorless Euglena longa but not Euglena gracilis”. Wild type strains of 

the flagellate E. gracilis possess three-membrane-bounded photosynthetic chloroplasts of secondary green 

algal origin.  E. longa is its close relative possessing non-photosynthetic plastids with a plastid genome. The 

treatment of E. gracilis with antibacterial drugs such as ofloxacin or streptomycin leads to permanent plastid 

gene loss and bleaching of this flagellate without affecting its growth and viability. In contrast, the treatment 

of E. longa with ofloxacin or streptomycin, which is also accompanied by the loss of plastid genes, kills this 

non-photosynthetic flagellate. These results suggest that an intact plastid genome is obligatory for the survival 

of E. longa but not E. gracilis. A molecular mechanism of an “intermittent bleaching” was proposed for an 

explanation for the plastid genome reduction in E. longa. 
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The plastids of the flagellate Euglena gracilis are bounded by three membranes and they 

arose through a process of secondary endosymbiosis between a photosynthetic prasinophyte 

alga (HRDÁ et al. 2012; TURMEL et al. 2009) and an ancestrally heterotrophic 

euglenozoan host (AHMADINEJAD et al. 2007; VESTEG et al. 2010; O’NEILL et al. 

2015a, b; YOSHIDA et al., 2016). The circular plastid genome of E. gracilis is of 

cyanobacterial origin and it is 143 kb in size (HALLICK et al. 1993). There are 

approximately 200–1000 plastid genomes copies per one E. gracilis cell (RAWSON & 

BOERMA 1976) distributed among approximately ten plastids. This plastid genome 

encodes one copy of each polypetide-encoding gene, but the rRNA genes are present in 
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three copies. The growth of E. gracilis in the presence of antibacterial drugs such as 

streptomycin (SM) or ofloxacin (OFL) leads to the process termed bleaching – the 

irreversible loss of the ability to form green colonies (the loss of photosynthetic ability) 

(POLÓNYI et al. 1998; for review see KRAJČOVIČ et al. 2002). The influence of various 

antibacterial agents on plastids (as well as on bacteria) differs. OFL is a specific inhibitor 

of plastid (and bacterial) DNA gyrase and SM is a specific inhibitor of plastid (and bacterial) 

protein synthesis (SCHWARTZBACH & SCHIFF 1974). 

Euglena (formerly Astasia) longa is a non-photosynthetic close relative of E. gracilis. It 

was considered to be a naturally bleached E. gracilis in the past (for review see BODYL 

1996). This opinion challenged after the discovery of a circular 73 kb E. longa plastid 

genome (GOCKEL & HACHTEL 2000). All genes encoding photosynthesis-related protein 

were lost from the E. longa plastid genome, except for the rbcL gene encoding a large 

subunit of RuBisCo. This reduced plastid genome is transcribed (GOCKEL et al. 1994; 

GOCKEL & HACHTEL 2000).  

The goal of the study of HADARIOVÁ et al. (2017) was to compare the influence of SM 

and OFL on the growth, viability and the plastid DNA content of E. longa and E. gracilis. 

The relative number of selected plastid genes (rrn16, rrn23, rpl2, rpl16, rpoC2, tufA and 

rbcL) in both Euglena species treated with SM or OFL was determined by quantitative (real-

time) PCR. The treatment of E. gracilis with SM or OFL resulted in bleaching and the rapid 

decrease of the copy number of all studied plastid genes except rpl16 without any influence 

on viability, growth and copy number of nuclear genes even after six weeks of antibiotic 

treatments. In contrast, E. longa was completely killed during the third week and the fifth 

week of SM and OFL treatment, respectively. A gradual decrease of the copy number of all 

studied plastid genes in E. longa cells had been observed during SM and OFL treatment, 

before the cells died. These results suggest that the loss of plastid genes (e.g. induced by 

antibiotics) is lethal for E. longa but not for E. gracilis.  

The function of the reduced but essential plastid genome of colorless E. longa is currently 

unknown, but it is likely that it encodes at least one protein necessary for E. longa survival 

that has to be expressed. This protein(s) is (are) likely involved in an essential plastid-

localized metabolic pathway(s). Such an essential metabolic pathway is unlikely to be 

localized solely in plastids of E. gracilis, but the same or similar metabolic pathway is likely 

rather localized in another E. gracilis compartment (i.e. in cytoplasm), what makes the loss 

of E. gracilis plastid genome if not the entire plastid compartment possible. 
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The essential non-photosynthetic E. longa plastid is currently not assumed to have 

evolved by the bleaching process. It is more likely that a selective loss of photosynthetic 

plastid genes (all but one) rather than a random extensive gene loss as during the bleaching 

process of E. gracilis led to the evolution of the reduced E. longa plastid genome. 

HADARIOVÁ et al. (2017) have proposed a molecular mechanism for the E. longa plastid 

genome reduction – an “intermittent bleaching” – the repeated exposures of the E. longa 

ancestor to subsaturating concentrations of reversible bleaching agents followed by the 

periods of growth without them. After the loss of a single photosynthetic gene, all other 

photosynthetic could have been lost during repeated rounds of intermittent bleaching, if they 

were not required for the survival. In contrast, the loss of essential non-photosynthetic 

plastid genes such as those involved in the expression of at least one essential plastid gene 

would be lethal and thus only E. longa cells retaining them survived. 
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