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Course Overview

CUDA - Course 2

► Basics
• Writing and executing GPU code

• Parallel programming model

• Transfer memory 
from/to device (video card)

• Synchronization, error handling, …

► Performance Optimization I
• Optimizing usage of parallelism 

in the hardware of the GPU

• Single Instruction Multiple Thread (SIMT)

• Optimization of bandwidth 
of device memory (global memory)

• Transfer of data host↔device

• Instruction throughput

► Shared Memory
• What is shared memory?

• Syntax & applications

• Reductions

• Exercise: scalar product

► Atomic Operations
• What are atomic operations?

• Syntax & applications

• Exercises: reduction, particle sort

► Performance Optimization II
• Optimizing shared memory accesses

• CUDA-GDB

• Visual Profiler

• Kepler architecture

• Exercise: matrix-matrix multiplications

► Advanced Features
• Texture Memory & Constant Memory

• Streams

• Using multiple GPUs

• Zero-copy host memory access

• IEEE

• Exercise: using multiple GPUs

► Numerical Libraries
• CUBLAS, CUSPARSE, CUFFT, 

CURAND

► OpenACC
• Alternatives to CUDA

• Introduction to accelerator 
programming with OpenACC
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► This course and its slides have been developed by 

Oliver Mangold

and is now continued by 

Thomas Baumann and Mhd. Amer Wafai
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Some Terms
► Host

• The PC system containing the video card

• Refers typically to CPU + memory on the main board
♦ Host program, host memory, etc.

► Device
• Video/accelerator card

• Consists of GPU + memory on the video board

► Global memory/Device memory
• Memory on the video board

• Off-chip from the GPU

• Not(!) host memory (on the main board)

► Multiprocessor
• A ‘core’  (computing element with it’s own program flow) of the GPU

• Multi: operates on multiple data at the same time
♦ SIMT: single instruction multiple thread (similar to SIMD, details later)

► Compute Capability
• Hardware ‘Version’ of the Graphics Processor

♦ The Tesla C2050 (Fermi architecture) has compute capability 2.0

♦ The GTX 680 (Kepler architecture) has compute capability 3.0

♦ The K20x (Kepler Architecture) has compute capability 3.5

♦ See PG Appendix G for CC features, see Appendix A for CC of newer video cards
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CUDA programs

► A CUDA program is usually organized into

• A host program

♦ Controls overall program flow

♦ Manages memory transfers from/to GPU

• One or multiple kernels running on the GPU

♦ Contains the fast parallel computation code

► ‘Accelerator’ programming model

• CPU = master

• GPU = slave

• CPU and GPU can work independently but CPU has control

♦ Parallelism between CPU and GPU: 
synchronization is necessary → discussed later
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Creating GPU code (C)

► Kernels:
• A C function can be declared to be device code callable from host 

by adding the __global__ declaration  specifier:

__global__ void VectorSum(float* inputA, 
float* inputB, float* output, int size);

• Such functions are called CUDA kernels

• Remark: kernels have to return void

► Device functions:
• A C function is declared to be device code callable from device by adding 

the __device__ declaration specifier:

__device__ float Max(float x, float y);

• Remark: device functions cannot be recursive for devices of compute capability < 2.0

► Other functions:
• Functions without these declarations are compiled as host code
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Creating GPU code (Fortran)

► Kernels:
• A subroutine can be declared to be device code callable from host 

by adding the global attribute:

attributes(global) subroutine VectorSum(a,b,output,size)

• Such functions are called CUDA kernels

• Remark: kernels cannot have dummy arguments with modifiers intent(out) and value

► Device subroutines / functions:
• A C function is declared to be device code callable from device by adding 

the __device__ declaration specifier:

attributes(device) real function Max(x,y)

• Remark: device subroutines/functions cannot be recursive 
for devices of compute capability < 2.0

► Other functions:
• Functions without these declarations are compiled as host code

CUDA - Course 8



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Calling CUDA kernels

► Kernels can be called from host code as any other function

• But require execution configuration <<< >>> specification

► Remarks:
• Kernel invocations are asynchronous, 

function call returns immediately, before execution on device is finished

• cudaDeviceSynchronize() can be used  to wait for running kernels

► Example (C):

int main() {
…
VectorSum<<<gridSize, blockSize>>>(inputA, inputB, 

output, size);
cudaDeviceSynchronize();
…
return 0;

}
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Calling CUDA kernels

► Example (Fortran):

program example

…

call VectorSum<<<gridSize, blockSize>>>(inputA, inputB, 

output, size)

error = cudaDeviceSynchronize()

…

end program example
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Hardware: Kepler Architecture (K20X)
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Kernel execution configuration
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► Meaning of execution 
configuration:

<<<gridSize, blockSize>>>

• Block of logical threads
♦ Are executed together (SIMT)

♦ are distributed to different 
scalar processors within the 
same MP

• Grid of blocks
♦ Are executed independently

in serial or parallel

♦ are distributed to different
multiprocessors

► On kernel invocation 
(‘function call’):
• All threads in all blocks execute 

the same function in parallel
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Threads & Blocks

► Advanced execution configuration syntax

dim3 blockSize(16,8,4); // total number of threads 
// per block = 512

dim3 gridSize(64,32);   // total number of blocks = 2048

MyKernel<<<gridSize, blockSize>>>();
…

• Threads and Blocks may be organized 1-, 2-, 3-dimensional

• Unspecified components of dim3 are initialized to 1
(overloaded C++ constructor)

► Get thread/block information from kernel code:

• threadIdx.x (threadIdx.y, threadIdx.z) → index of this thread within block

• blockDim.x (blockDim.y, blockDim.z) → number of threads per block

• blockIdx.x (blockIdx.y, blockIdx.z) → index of block of this tread

• gridDim.x (gridDim.y, gridDim.z) → number of blocks in grid
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Threads & Blocks (Fortran)

► Advanced execution configuration syntax

type(dim3) :: blockSize = dim3(16,8,4) // total number of threads 
// per block = 512

type(dim3) :: gridSize = dim3(64,32,1) // total number of blocks = 2048

call MyKernel<<<gridSize, blockSize>>>()
…

• Threads or blocks may be organized 1-, 2-, 3-dimensional

• All components of dim3 have to be specified (set unused components to 1)

► Get thread/block information from kernel code:

• threadIdx%x (threadIdx%y, threadIdx%z) → index of this thread within block

• blockDim%x (blockDim%y, blockDim%z) → number of threads per block

• blockIdx%x (blockIdx%y, blockIdx%z) → index of block of this tread

• gridDim%x (gridDim%y, gridDim%z) → number of blocks in grid

• Note: all indices start counting from 1 in Fortran but from 0 in C (!)
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Limits

► The following limitations apply 
for the execution configuration

• CC≥2.0: Maximum number of threads per block is 1024
blockDim.x * blockDim.y * blockDim.z ≤ 1024

• CC<2.0: Maximum number of threads per block is 512

• Maximum number of threads in z-direction is 64
blockDim.z≤64

• Maximum number of blocks per dimension is 

♦ CC<3.0: 65535 in all directions
gridDim.x≤65535, gridDim.y≤65535, gridDim.z≤65535

♦ CC≥3.0: 2147483647 in x-direction, 65535 in y,z-directions 
gridDim.x≤2147483647, gridDim.y≤65535, gridDim.z≤65535

♦ But overall number of blocks can be large
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Example: add 2 vectors with one block

► If vector size = block size:

__global__ void VectorSum(float* inputA, float* inputB, 

float* output) {

output[threadIdx.x] = inputA[threadIdx.x] + 

inputB[threadIdx.x];

}

CUDA - Course 16
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Example: add 2 vectors with one block

► If vector size ≠ block size:

__global__ void VectorSum(float* inputA, float* inputB, 

float* output, int size) {

for( int i=threadIdx.x; i<size; i+=blockDim.x ) {

output[i] = inputA[i] + inputB[i];

}

}
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Thread 1
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Thread 2
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Thread 3
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…

…

Thread 0

Element 4

Each thread processes one array element per for loop iteration
The elements are processed in ‘round robin’ fashion

Total number of threads = 4

Thread 1

Element 5
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Example: add 2 vectors with many blocks

► If vector size = block size * grid size:

__global__ void VectorSum(float* inputA, float* inputB, 

float* output) {

// local variables are local to thread

int myIndex = blockIdx.x*blockDim.x + threadIdx.x;

output[myIndex] = inputA[myIndex] + inputB[myIndex];

}
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Example: add 2 vectors with many blocks

► If vector size ≠ block size * grid size:

__global__ void VectorSum(float* inputA, float* inputB, 

float* output, int size) {

for( int i = blockIdx.x*blockDim.x + threadIdx.x; 

i<size; i+=blockDim.x*gridDim.x ) {

output[i] = inputA[i] + inputB[i];

}

}
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Variable declarations and memory

► Variables declared outside of device functions 
reside on the host as usual

► Variables declared __device__ (Fortran: device) in global scope 
(outside of functions) reside in global device memory 
and are accessible from all threads of all blocks of all kernels

► Variables declared normally inside device functions 
reside in GPU registers or global device memory

• these are local per thread

► Variables declared __constant__ (Fortran: constant) 
in global scope reside in constant memory 
and are readable from all threads of all blocks of all kernels

• Constant memory is discussed later

► Variables declared __shared__ (Fortran: shared) inside device functions 
reside in shared memory and are local per block

• Shared memory is discussed later
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Allocate and copy device memory (C)
► Allocate device memory:

cudaError_t cudaMalloc( void** pointer, size_t size );

► Free device memory:
cudaError_t cudaFree( void* pointer );

► Copy memory:
cudaError_t cudaMemcpy( void* dst, const void* src, size_t count, 

enum cudaMemcpyKind kind );

kind may be

• cudaMemcpyHostToHost, cudaMemcpyHostToDevice, 
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice

• cudaMemcpyDefault (with unified address space only)

► Allocate and free page-locked host memory:
cudaError_t cudaMallocHost( void** pointer, size_t size );
cudaError_t cudaFreeHost( void* pointer ); 

► Why?
• Faster copy from/to device: 

non-page-locked host memory will be buffered in PL memory during memcpy (!)

• Access from device is possible

• Asynchronous copy is possible
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Allocate and copy device memory (Fortran)
► Allocate device memory (static):

real, dimension(0:size-1), device :: data

► Allocate device memory (dynamic):
real, allocatable, dimension(:), device :: data
allocate(data(0:size-1))
…
deallocate(data)

► Copy memory:
simply use (array) assignment (works in all directions, except subarray copy from device to device):
data_device = data_host
data_host = data_device

• Note: device single array element accesses (xxx=data_device(0)), 
array initialization (data_device=0), and a few other operations work as well

• Note: on subarray copy sometimes complete array is copied (compiler bug)

► Allocate page-locked host memory:

real, allocatable, dimension(:), pinned :: data
allocate(data(0:size-1))
…
deallocate(data) 

• Note: this works only with allocatable arrays (!)
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Pointers (C)

► Within host code:
only pointers to host memory can be dereferenced.

► Within device code:
• Since CUDA 4.0 unified address space:

both host and device pointers can be dereferenced

• Note: only memory regions allocated with cudaMallocHost() 
(or other CUDA functions) can be accessed from the device!

• Conclusion: pointers passed to kernels as arguments
must point to global memory (or unified address space)

► Note:
• Pointers in device code may also point 

to shared memory or constant memory

► Fortran: compiler checks for most dereferencing errors
• Note: unified address space not usable directly

(compiler forbids passing pinned variables to kernel)
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Passing arguments to kernels

► With CUDA 4.0 and CC 2.0 pointers and arrays (C) passed to kernels 
are assumed to lie in the unified address space
of device memory and page-locked host memory

► Arrays (Fortran) passed to kernels 
are assumed to be stored in global device memory (declared device)

► Scalars like int, float, …, struct (C), 
integer, real, type (Fortran)
• are passed by value to the kernel (C)

• are passed by value to the kernel if declared value, 
or assumed to be passed device variables otherwise (Fortran) 

► Note: no device memory allocation and copy is necessary 
to pass scalars to kernels by value

► Note: in Fortran kernel arguments may not be declared value
and intent(out) or intent(inout) at the same time

► Note: passed by value kernel arguments 
are stored in shared memory (shared memory is discussed later)
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Synchronization

► How can the execution of the threads and blocks be synchronized?
• The device function (Fortran: subroutine)

__syncthreads() (Fortran: call syncthreads())

synchronizes all threads within the same block
♦ Note all threads of the block need to reach the same __syncthreads() call 

or a deadlock happens

• The host function (Fortran: subroutine)

cudaDeviceSynchronize() (error=cudadevicesynchronize())

blocks the host execution until all GPU kernels and other operations are finished

• Implicit barriers
♦ Multiple kernel executions never overlap for devices of compute capability <2.0

– Up to 32 (Fermi: 16) kernels can be executed simultaneously (depending on resource usage)

♦ cudaMemcpy (Host → Device, Device → Host, Device → Device) 
does not overlap with kernel execution

– But cudaMemcpy (Host → Host) does (!)

– And cudaMemcpyAsync does also

♦ cudaMemcpy blocks the host thread until the transfer is finished
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Error handling

► The function

cudaError_t cudaGetLastError();
(Fortran: integer function cudaGetLastError())

returns the last error from a CUDA API call or kernel execution

► The function 

char* cudaGetErrorString(cudaError_t error);
(Fortran: character(len=*) function cudaGetErrorString(error))

returns the error in printable form

► Most cuda functions return a cudaError_t directly

• e.g. cudaMemcpy(), cudaDeviceSynchronize()

► If no error happened the returned value is cudaSuccess

► Note on errors during kernel execution:
As kernel call is asynchronous, a cudaGetLastError() directly afterwards 
does not show error → next CUDA API call reports the error
• Typically reported error: “unspecified launch failure”, translation: kernel program crashed

Common reason: invalid access to memory (array bounds violation, etc.) 
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Simplified error handling (C)

► The file “cuda_utils.h” provides a simpler interface to do error 
checking of cuda calls

► The macro cudaVerify(x) assumes expression x returns 
an cudaError_t. 
If the result is an error it prints the error string 
and aborts the program.

• Appropriate for most CUDA library calls

► The macro cudaVerifyKernel(x) executes statement x 
and calls cudaGetLastError() afterwards. 
If the result is an error it prints the error string and aborts the program

• Appropriate for kernel calls

• Note: surround kernel calls with double ‘(‘ ‘)‘ parentheses.
Otherwise the preprocessor gets confused
cudaVerifyKernel((myKernel<<<…>>>(…)))
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Example host program (C)
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int main() {

int vectorSize = 10000000;

int memorySize = sizeof(float)*vectorSize;

float *vectorHostA; 

float *vectorHostB;

float* vectorHostResult;

cudaMallocHost((void**)&vectorHostA, 
memorySize);

cudaMallocHost((void**)&vectorHostB, 
memorySize);

cudaMallocHost((void**)&vectorHostResult, 
memorySize);

... initialize vectors A,B ...

float* vectorDeviceA;

float* vectorDeviceB;

float* vectorDeviceResult;

cudaMalloc((void**)&vectorDeviceA,

memorySize);

cudaMalloc((void**)&vectorDeviceB, 
memorySize);

cudaMalloc((void**)&vectorDeviceResult, 
memorySize);

cudaMemcpy(vectorDeviceA, vectorHostA,
memorySize, cudaMemcpyHostToDevice);

cudaMemcpy(vectorDeviceB, vectorHostB, 
memorySize, cudaMemcpyHostToDevice);

VectorSum<<<gridSize, blockSize>>>

(vectorDeviceA, vectorDeviceB, 

vectorDeviceResult, vectorSize);

cudaMemcpy(vectorHostResult, 
vectorDeviceResult,

memorySize, cudaMemcpyDeviceToHost);

... print result ...

cudaFree(vectorDeviceA);

cudaFree(vectorDeviceB);

cudaFree(vectorDeviceResult);

cudaFreeHost(vectorHostA);

cudaFreeHost(vectorHostB);

cudaFreeHost(vectorHostResult);

return 0;

}
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Example host program (Fortran)
program demo

use device_code

implicit none

integer,parameter :: vectorSize = 10000000

real,dimension(0:vectorSize-1) :: vectorHostA

real,dimension(0:vectorSize-1) :: vectorHostB

real,dimension(0:vectorSize-1) :: vectorHostResult

real,dimension(0:vectorSize-1),device :: vectorDeviceA

real,dimension(0:vectorSize-1),device :: vectorDeviceB

real,dimension(0:vectorSize-1),device :: vectorDeviceResult

... initialize vectors A,B ...

vectorDeviceA = vectorHostA

vectorDeviceB = vectorHostB

call VectorSum<<<gridSize, blockSize>>>(vectorDeviceA, vectorDeviceB, &

vectorDeviceResult, vectorSize)

vectorHostResult = vectorDeviceResult

... print result ...

end program demo
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Example device program (C)

► __global__ void VectorSum(float* inputA, 

float* inputB, float* output, int size) {

for( int i = blockIdx.x*blockDim.x + threadIdx.x; 

i<size; i+=blockDim.x*gridDim.x ) {

output[i] = inputA[i] + inputB[i];

}

}
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::

Example device program (Fortran)

► module device_code

contains

attributes(global) subroutine & 

VectorSum(inputA, inputB, output, size)

implicit none

real, dimension(0:size-1) :: inputA,inputB,output

integer, value :: size

integer :: i

do i=(blockIdx%x-1)*blockDim%x + threadIdx%x-1, &

size, blockDim%x*gridDim%x

output(i) = inputA(i) + inputB(i)

end do

end subroutine VectorSum

end module device_code
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

What can be used inside kernels

► What can be used

• All mathematical operators

• Control flow constructs (if, for, while, case, goto)

• Transcendent mathematical functions 
for single precision floating point 
(see Table D-1 in PG)

• Calls to device functions/subroutines

• Pointers (C)

• Structs (C) and statically-sized arrays (C, Fortran)

• Assumed-shape arrays as kernel arguments (Fortran)

• CUDA-specific built-in functions

• C++ templates

• C++ function overloading
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

What can not be used inside kernels

► What can be used only on newer devices
• Double precision floats and DP mathematical functions

(compute capability ≥ 1.3)

• Recursive function calls (C) (compute capability ≥ 2.0)

• Function pointers (compute capability ≥ 2.0, CUDA ≥ 3.1)

• C++ non-polymorphic classes (no virtual functions) (compute c. ≥ 2.0)

• printf (compute capability ≥ 2.0, CUDA ≥ 3.1) (Fortran: print available, but buggy)

• malloc, new (compute capability ≥ 2.0, CUDA ≥ 3.2) (no Fortran equivalent, yet)

• C++ polymorphic classes (compute capability ≥ 2.0, CUDA ≥ 4.0)

► What can not be used at the moment inside device code
• C99/C++ dynamically-sized ‘[]’-arrays

• System calls, I/O, memory management
♦ fopen, fprintf, system, ...

• Long double floats

• Allocatable arrays, pointers, value with intent(out) or intent(inout) (Fortran)

• Recursive, pure, elemental function calls, optional function arguments (Fortran)

• Save attribute (Fortran), static variables declared in device functions
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::CUDA - Course
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Exercises 1+2: Vector-scalar-multiplication
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 1: serial function evaluations on GPU (C)

► Vector-scalar multiplication
• CPU code (exercise01_cpu.c):

const int size = 10000;
float a[size];
const float b;
float c[size];
…
for(int i=0;i<size;i++) {
c[i]=a[i]*b;

}

• The computation should be done on the GPU
but use only one thread and only one block

► Sketch:
• Allocate an array on the device with cudaMalloc(),

Allocate an array on the host with cudaMallocHost()

• Use cudaMemcpy to copy the input vector to the GPU

• Call kernel with gridSize = 1 and blockSize = 1
♦ The kernel takes the address of the device memory as argument

• Use cudaMemcpy to copy the results back to the host
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 1: serial function evaluations on GPU (Fortran)

► Vector-scalar multiplication
• CPU code (exercise01_cpu.f90):

subroutine eval(a,b,c,size)
implicit none
real, dimension(0:size-1) :: a,c
real, value :: b
integer, value :: size,I
do i = 0, size-1

c(i)=a(i)*b;
end do

end subroutine eval

• The computation should be done on the GPU
but use only one thread and only one block

► Sketch:
• Allocate an array on the device using the device modifier,

Use an array assignment to copy the input vector to the GPU

• Call kernel with gridSize = 1 and blockSize = 1
♦ The kernel takes the array on the device memory as argument

• Use an array assignment to copy the results back to the host
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 2: parallel function evaluations on GPU

► Modify your solution of exercise 1 
to use many threads in many blocks which do the work in parallel

► Hint:

• Use threadIdx.x, blockDim.x, 
blockIdx.x and gridDim.x to decide for each thread
which array elements it has to process

► Advanced exercise:
• Can you modify your code in way 

that it does not use a for loop inside the kernel
but uses a large number of blocks
(depending on the vector size) instead?

CUDA - Course 37



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Performance Optimization I

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU architecture
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► Two-Stage parallelism

• A GPU contains multiple 
Multiprocessors (SMX)
(Kepler: 13 -15)

• Each Multiprocessor (SMX) 
contains multiple
scalar processors (Cores)
(Kepler: 192)

► Programming of GPUs:

• Work has to be distributed

♦ To different 
multiprocessors

♦ To different  
scalar processors 
within one multiprocessor



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Hardware: Kepler architecture
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Warps

► SIMT execution

• Single instruction multiple thread 

• Each group of 32 threads within the same block 
execute the same instruction at the same time

• Those groups of threads are called warps

• Note: some operations are per half-warp, 
this is either the first or second 16 threads of a warp

• How are warps mapped to multidimensional blocks?

♦ 3D-thread index is mapped to linear index,
where threadIdx.x is fastest index

♦ Example: blockDim=dim3(16,6,1)

– 96 threads will result in 3 warps

» warp 0: 0≤threadIdx.x ≤15, 0≤threadIdx.y ≤1

» warp 1: 0≤threadIdx.x ≤15, 2≤threadIdx.y ≤3

» warp 2: 0≤threadIdx.x ≤15, 4≤threadIdx.y ≤5
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

SIMT execution

► What happens when control flows diverge?

if ( threadIdx.x > 0 ) {

output[threadIdx.x] = input[threadIdx.x] + 

input[threadIdx.x-1];

} else {

output[threadIdx.x] = input[threadIdx.x] + 1;

}

• Answer: it works, but branches are executed in serial

• It is handled efficiently: only branches which are taken 

by at least one thread are executed
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on SIMT execution

► How many threads per block should one use?

• As threads are organized in groups of 32 threads (warps) 

which execute together

♦ A block of 3 threads needs the same execution time 

as a block of 32 threads (when working on GPU registers)

♦ Ideally the number of threads is a multiple of 32

• Maximum number of threads per block is 1024

• Number of registers per multiprocessor is limited 

(Kepler: 65536)

♦ Registers per thread * threads per block ≤ registers per MP
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Memory model
► There are several different kinds of memory

• Host memory: can only be accessed via PCIe bus (slow)

• Global memory: main memory of the video board (Tesla K20x: 6 GiB), 
can be accessed from all multiprocessors

♦ High bandwidth (> 100 GB/s)

♦ High latency (several 100 cycles)

♦ CC ≥ 2.0 : (16 or 48 kiB) L1 cache/shared memory per MP 

♦ CC ≥ 2.0 : shared L2 cache

• GPU registers: used for data local to one thread
♦ Can be accessed within 1 cycle

• Local memory: physically resides global memory 
but is used for data local to one thread

• Shared, constant, texture memory: discussed later

► Notes:
• Local variables of a kernel function reside in GPU registers 

(if not declared otherwise)
♦ Are local to each thread

♦ If no more registers are available local variables are stored in local memory

• Kernel function arguments reside in shared memory on devices with CC<2.0 
and in constant memory otherwise(→ accessing kernel arguments is very fast)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Kernel dummy parameters (Fortran)

► In C kernel scalar arguments are passed by value, 
and pointers point to global memory

► In Fortran scalar arguments are by default stored in global memory
• To reproduce the C behavior of passing scalar arguments 

by value in shared memory the ‘value’ modifier must be used:
attribute(global) subroutine my_kernel(my_param)

real, value :: my_param
…

► Note: ‘value’ parameters are stored in shared memory
(discussed later) which is faster than global memory

► Array descriptors are usually passed in global memory.
This means using operators like size(), shape(), …, 
results in global memory accesses (slow!)
• use sparingly or pass size information by value separately

• Note: storing of array descriptors to global memory (extra memcpy)
can be avoided by specifying sizes for dummy parameters
(dimension(0:size-1) instead of dimension(:))
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on block size and grid size

► How many blocks per grid should one use?

• To use all multiprocessors, 

number of blocks ≥ number of multiprocessors

► As accesses to global memory have long latency,

to get full memory bandwidth, latency hiding

is necessary(!)

• If the number of blocks is larger than the number of 

multiprocessors, block execution will be overlapped 

(multitasking)

► Equivalently for threads: 

if the number of threads is larger than the warp size (32) 

warp execution will be overlapped/multitasked

CUDA - Course 46



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Latency hiding

► How does latency hiding work?

► Each multiprocessor can switch/‘multitask’ between 
several warps – even of different blocks

► If a thread/warp requests global memory 
it has to wait a very quite long (500-600 cycles!)

► During this time the multiprocessor 
executes code of a different warp
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on latency hiding / multitasking

► The maximum number of warps than can be operated on 

at the same time by one multiprocessor is

• 48 for Fermi architecture

• 64 for Kepler architecture

► The maximum number of blocks than can be operated on 

at the same time by one multiprocessor is 

• 8 for Fermi architecture

• 16 for Kepler architecture

► Conclusion: block sizes larger than 32 

may be advantageous for latency hiding
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Register usage

► Important note: warp switching/multitasking 
will only happen as far as the available number registers and the 
vailable shared memory in the multiprocessor is enough for multiple 
warps/blocks
• Each multiprocessor has only a limited number of registers (!)

♦ Kepler: 65536, Fermi: 32768, register size is 32 bits

► How do I find out how many registers per thread 
my kernel uses?
• CUDA profiler or
• --ptxas-options –v or -Xptxas –v

• See the difference if you compile with -arch=sm_(35, 20, 
13, 10)

► Can I limit the number of registers to use?
• Yes: using __launch_bounds__(maxThreadsPerBlock,minBlocksPerMP)

on kernel definition

• or using ‘--maxrregcount <N>’ on compilation
• Lower bound is 16 reg/thread
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Global memory accesses and caching

► Cache lines

• Data is transferred to/from L1/L2 cache in blocks of 128 bytes

• 128 consecutive bytes in global memory belong to the same cache 
line

► Note: caches are small:
with 1024 concurrent threads per multiprocessor, around one 
third cache line/thread (!)

• If each thread in the device accesses a different cache line 
in the same cycle, caching is useless!

CUDA - Course 50

…

cache line sizephysical
global
memory

cache …
transferred as one block

from/to cache



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Coalesced accesses

► Coalesced accesses:
• Combining global memory access improves performance

• If multiple threads of a warp access the same cache line (128 bytes) 
the accesses are combined into one transfer

► Note: number of transferred cache lines per cycle is limited 
→ it is slower to access multiple different cache lines 
at the same time from the same warp (!)

► Note: Kepler always transfers 128 byte blocks from/to memory/cache, 
regardless how much data of the block is needed

► Older hardware (T10):
• pre-Fermi cards do not have L1/L2 cache

→  coalescing more important, as unneeded data is always wasted

• T10 transfers 32-byte, 64-byte or 128-byte aligned blocks, 
as best suited (can be advantage over Fermi)

• memory accesses are per half-warp 
(not per warp), so only first/second 16 threads combine transfers
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Coalesced vs. uncoalesced access patterns
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► Coalesced accesses:

► Uncoalesced accesses:
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Global memory writes on Fermi and Kepler

► Note on Fermi/Kepler and coalesced write accesses:
• Cache architecture requires that after each write 

a cache line needs to be in a consistent state

• When doing a partial write on a cache line
in case its data contents were not present in cache before,  
the data has to be read from memory before the write can be done!

• This is not the case if the cache line is written completely 
with one coalesced access

• Effect: it is usually faster to write all data elements of a cache line with a 
coalesced access, instead of

♦ writing only some elements

♦ writing the elements sequentially

• Example:

index = threadIdx.x+blockIdx.x*blockDim.x;
if ((threadIdx.x&31)!=0) {

output[index] = inputA[index] + inputB[index];
}

is slower than the version without the if clause!
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUDA kernel startup time

► How long does it take to start a kernel from the host?
• Answer: about 3.2μs + 4.8ns*(grid size)

(our measurement on our Tesla K20X, Fermi is at about 2.5-3µs)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on kernel startup time

► Conclusion: 

Overhead per block is only a few cycles

→ It is okay to use a large number of blocks 

instead of programming loops

• This should be the preferred solution 

to allow for more latency hiding
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Memory transfers host ↔ device

► How long does it take to transfer memory 

from/to the device?

• Answer: about 3.3 μs+(data size)/(6GB/s) 

for page-locked host memory

(our measurement on our Tesla C1060s)

► Conclusion: keep data as long as possible on the device(!)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

PCIe memory transfer speed
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

PCIe memory transfer speed
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Is GPU always faster?

► First estimation:

• The Time, the code needs to execute on CPU: tcpu

• The amount of data which needs to be copied to/from GPU: d

• The Time needed for data copy: tcopy= d / (PCIe speed)

• If tcopy > tcpu CPU execution will be faster(!)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Note on memory transfers host ↔ device

► Advanced feature: overlapping data transfer 

with computation

• The function 

cudaError_t cudaMemcpyAsync( void* dst, const void* src, 

size_t count, enum cudaMemcpyKind kind, 

cudaStream_t stream );

can be used to overlap transfers 

with CPU and/or GPU computations

• Note: the usage of streams is required for this:

Streams are discussed later
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on GPU Computation

► Problem size:

• high memory latency and device parallelism

→ CPU faster for small problem size 

► Non-parallelizable code parts

• computation on CPU → PCIe data transfer costly

• computation on GPU → single thread performance 

might be 100 times slower than CPU

♦ stream addition: Nehalem: 9.2 GB/s, Fermi C2050: 72 MB/s

♦ logistic map iteration: 

Nehalem: 740 MFLOPS, Fermi C2050: 43 MFLOPS
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Performance: FDTD 2D heat equation
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Performance: FDTD 2D heat equation
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Double precision floating point numbers

► Double additions and multiplications 
are slower by a factor of 8 on consumer Fermi cards 
(GTX 4xx/5xx), a factor of 24 on consumer Kepler cards 
(GTX 6xx), a factor of 2 on HPC Fermi cards (Tesla 20xx) and a 
factor of 3 on HPC Kepler cards (Tesla K20x)

► Note: in many cases a factor 8 does not matter, when speed is 
limited by memory bandwidth (but a factor 24 usually does!)

► Note: to use doubles a device of 
compute capability ≥ 1.3 is required.
This means ‘-arch=compute_13’, ‘-arch=compute_20’ or , ‘-
arch=compute_3?’ on compilation is required

► Note: be careful with floating point constants: 
in C/C++ constants without suffix ‘1.45’ are doubles. 
Use the ‘f’ suffix if you wish your computation 
to be done in single precision: ‘1.45f’ 
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Instruction throughput

► A multiprocessor can execute the following number 
of the given type of operation per cycle (Tesla K20x)

► Single precision float operations
• add or multiply or multiply-add (192)

• 1/x (32)

• 1/sqrtf(x) (32)

• __sinf(x), __cosf(x), __log2f(x), exp2f(x) (32)

• sinf(x), cosf(x) (depends on argument, but slow)
♦ Note: transcendental function throughput is still high compared to CPU

C2050: 14G sinf operations/s, 64G __sinf operations/s
Nehalem @2.8 GHz, 2x4 cores: 880M sinf operations/s

• __fdividef(x,y) (faster than x/y)

• atomic operation, L2, cache, no conflict (24) 

► Double precision float operations
• add or multiply or multiply-add (64)

• sin(x), cos(x), exp(x) (faster than half speed of SP versions)

► 32-bit integer operations
• add, &, |, compare (160)

• shift (64)

• multiply, multiply-add (32)

► __syncthreads() (128)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Pipelining and data dependencies

► GPU can start executing a new instruction of the same thread before the last 
one is finished

► This can only work if there are no data dependencies(!)

► Compare the following two code fragments
1) float value1;

… 
for(int j=0;j<iterations;j++) {
value1=4.f*value1*(1.f-value1);
value1=4.f*value1*(1.f-value1); // requires previous result

}

2) float value1;
float value2;
… 
for(int j=0;j<iterations;j++) {
value1=4.f*value1*(1.f-value1);
value2=4.f*value2*(1.f-value2); // no data dependency

}

► One finds that the second one runs considerably faster. Why? 
Because the 2 statements in the loop can be executed independently of each other.
The processor does not have to wait for the results of the first statement
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Summary on performance

► Use all scalar processors and all multiprocessors busy

► Avoid divergences in control flow 

of threads within the same warp

► Use many blocks but few registers and little shared memory 

for latency hiding

► Use coalesced accesses to global memory

(or at least avoid accessing too many cache lines 

at the same time)

► Keep data on device as long as possible

► Use single precision floats

► Use fast __ mathematical operations when possible
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Exercises 3-5: Coalesced accesses

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 3: Vector addition

► Compile the vector addition example below and measure the 
performance for different block/grid sizes

► Which is the optimal execution configuration?

► For which range of block/grid sizes 
do you get good performance and memory BW?
• Note: you should see at least 70 GB/s on T10, 80 GB/s on Fermi 

and ~150 GB/s on K20x

► Kernel code (exercise03_template.cu):

__global__ void VectorSum(float* inputA, 
float* inputB, float* output) {

for( int i = blockIdx.x*blockDim.x + threadIdx.x; 
i<size; i+=blockDim.x*gridDim.x ) {

output[i] = inputA[i] + inputB[i];
}

}
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Timers (C)

► How to measure performance?

► The file “cuda_utils.h” provides a simple interface 
to the POSIX high resolution timers

► Usage:

Timer timer;
initTimer(&timer);
… code to measure …
double duration=getTimer(&timer);

► Add the linker option -lrt to the nvcc command line 
when compiling your program to link the POSIX real time library

► Performance (FLOPS) is (vector size)/duration for the vector addition 
kernel, as one float operation per vector component is needed

► Note: Remember that kernel invocations are asynchronous (!). 
A cudaDeviceSynchronize() call is needed before getTimer()
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Timers (Fortran)

► How to measure performance?

► Fortran provides the built-in subroutine

call cpu_time(time)

which returns a real-value timestamp in seconds

► Performance (FLOPS) is (vector size)/duration for the vector 
addition kernel, as one float operation per vector component is 
needed

► Note: Remember that kernel invocations are asynchronous (!). 
A cudaDeviceSynchronize() call is needed 
before getTimer()
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 4: Uncoalesced access patterns

► Modify the vector addition kernel from exercise 3 to use different access 
patterns to the vector data
a) Add an offset to the input vectors, so it is no longer aligned 

the way cudaMalloc() returns memory regions

C:
cudaMalloc((void**)&vector_x_alloc,

(vector_size+offset)*sizeof(float));
vector_x_gpu=vector_x_alloc+offset;
…
free(vector_x_alloc)

Fortran:
real, dimension(0:vector_size-1+offset), device :: vector_x_gpu
…
call VectorSum<<<…>>>(vector_x_gpu &

(offset:vector_size+offset-1),…)

Which effect do you expect on performance?
On Kepler, do you see for offsets on vector_c
a behavior different from that for vector_a and vector_b?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 4: Uncoalesced access patterns

► Modify the vector addition kernel from exercise 3 to use different access 
patterns to the vector data
b) Rewrite the kernel so that each thread operates 

on one continuous region of vector indices 
(stride is 1 instead of blockDim.x*gridDim.x):

C:
for(int i=my_start; i<my_end;i++)

Fortran:
do i=my_start,my_end-1,1

Do you expect higher or lower performance from this?
How large do you think the effect is?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 5 (optional): Diffusion equation in 1D

► Each field point requires the values of its neighbors.

► CPU implementation:

void diffusion(float* input, float* output,  

int size) {

for( int i=1; i<size-1; i++ ) {

output[i] = input[i]*(1.f-2.f*alpha) + 

alpha*(input[i-1]+input[i+1]);

}

}

► Note: each input value is read 3 times, 
but caching in L1 is expected

CUDA - Course 74

)2(
11

1 t

i

t

i

t

i

t

i

t

i
fffff 








:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 5: Diffusion equation in 1D

► Task:

• Modify the kernel of exercise 2 or 3 implement 

a time step of the diffusion scheme on a 1D array

(or just take the solution exercise05_solution.cu/.f90)

• Re-adjust grid/block size for optimal performance

• Compare the performance to exercise 3

► Note: please notice that the input array needs to be 1 

element larger on the beginning and the end (2 in total)

than the size of the computation. 

Do not forget to add offsets where necessary
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Shared Memory
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

What is shared memory?
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► Shared between all threads in the 
same block
• Scope is per block

► Kepler:
• 16 kB or 48 kB per multiprocessor

► Organized into 32 banks

► As fast as registers
(if no bank conflicts happen, 
discussed later)

► ‘user-managed cache’

► typical applications
• intermediate buffer 

for global memory 
to improve memory reuse

• Mechanism for fast exchange of 
data between threads of the same 
block



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can shared memory be used?

► In C local variables are being declared 
to reside in shared memory 
by the __shared__ declaration specifier: 

__global__ void myKernel() {
__shared__ float data[size];
...

}

In Fortran local variables are being declared 
to reside in shared memory 
by the shared modifier: 

attributes(global) subroutine myKernel()
real, shared, dimension(0,size-1) :: data
...

end subroutine myKernel

► Note: the array size has to be a compile time constant
• Fortran: be careful, compiler does not report the error, 

but produces undefined results !
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Pointers to shared memory in C

► Pointers can point to both shared or global memory 
without any special declaration:

__global__ void myKernel(float* input) {

__shared__ float sharedData[size];

float* a = input;

float* b = sharedData;

...

}

► Restriction on devices of compute capability < 2.0:
it must be possible to decide at compile-time 
which memory a pointer points to 
(the nvcc compiler produces a warning otherwise)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Dynamically allocated shared memory

► C: shared memory can be allocated dynamically 
by defining an extern __shared__ array of unknown size: 

__global__ void myKernel() {
__shared__ float a[32];
extern __shared__ char dynamicSharedData[];
...

}

► Fortran: shared memory can be allocated dynamically 
by defining an assumed size shared array: 

attributes(global) subroutine myKernel() {
real, shared, dimension(*) :: data
...

end subroutine myKernel

► The size of the dynamic shared memory (in bytes) must be provided in the execution 
configuration: 

myKernel<<< gridSize, blockSize, dynamicSharedMemorySize >>>();

► Note: all dynamic shared arrays point to the same address.
• If multiple shared arrays are required the addresses 

have to be corrected by hand (!)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Synchronization

► How to assure that a read operation 

to shared (or global) memory on one thread 

happens after a write operation on another thread?

__global__ void myKernel() {

__shared__ float a[...];

// thread 0 writes a[0], thread 1 writes a[1], ...

a[threadIdx.x] = ...;

// thread 0 reads a[1], thread 1 reads a[2], ...

... = a[threadIdx.x+1];

}
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Synchronization

► Solution: the __syncthreads() function provides 
a barrier synchronization for all threads in the block. 
A thread which reaches the barrier waits until all threads of the block 
have also reached the barrier.

__global__ void myKernel() {

__shared__ float a[...];

// thread 0 writes a[0], thread 1 writes a[1], ...
a[threadIdx.x] = ...;

__syncthreads();

// thread 0 reads a[1], thread 1 reads a[2], ...
... = a[threadIdx.x+1];

}

► Fortran: 

call syncthreads()
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Example: matrix transpose 1/3

► Naive implementation:

__global__ void transpose(float* input, float* output,  

int sizeX,int sizeY) {

int x=blockIdx.x*blockDim.x+threadIdx.x;

int y=blockIdx.y*blockDim.y+threadIdx.y;

output[x*sizeX+y]=input[y*sizeX+x];

}

► Problem: either read or write operation is not coalesced
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Example: matrix transpose 2/3

► Implementation using shared memory (block size = 16,16):

__global__ void transpose(float* input, float* output,  

int sizeX, int sizeY) {

__shared__ float sharedMem[16][16];

int xIn = blockIdx.x*blockDim.x+threadIdx.x;

int yIn = blockIdx.y*blockDim.y+threadIdx.y;

sharedMem[threadIdx.y][threadIdx.x] = input[yIn*sizeX+xIn];

__syncthreads();

int xOut = blockIdx.y*blockDim.x+threadIdx.x;

int yOut = blockIdx.x*blockDim.y+threadIdx.y;

output[yOut*sizeY+xOut] = 

sharedMem[threadIdx.x][threadIdx.y];

}

► Note: if sizeX or sizeY not multiple of 16, additional checks are needed
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Example: matrix transpose 3/3

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Reduction operations

► Reduction operation

• Combine a set values 

(which is distributed over multiple threads or blocks) 

into one value

♦ E.g. by addition, multiplication, min, max
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Reduction operations

► How to do this in CUDA?

• Operations are associative (in approximation), 
so summation can be split

• Build partial sums for each thread separately

• Build partial sums for each block using shared memory

• Combine the per block results into end result

♦ Separate kernel is needed because kernel borders 
are the only (sensible) way to synchronize multiple blocks

– Each block writes partial sum to global memory

– Separate kernel reduces the partial sums

♦ Note: Atomic operations can be used if the values are integers
– E.g. atomicAdd(int* globalSum, int value);

– See PG Appendix B.12

– Kepler and Fermi also have atomicAdd() for single precision floats
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Configuring Fermi/Kepler shared memory size

► Fermi and Kepler have in total 64 kB of memory per multiprocessor
which contains both L1 cache and shared memory

► It can be configured as
• 48 kB L1 cache and 16 kB shared memory

• 16 kB L1 cache and 48 kB shared memory

• 32 kB L1 cache and 32 kB shared memory (only Kepler)

► The function

cudaError_t cudaDeviceSetCacheConfig
(enum cudaFuncCache cacheConfig);

sets this configuration.

► cacheConfig may be:
• cudaFuncCachePreferNone: automatically selected (default)

• cudaFuncCachePreferShared: 48 kB shared memory
cudaFuncCachePreferEqual: 32 kB / 32 kB (Kepler only)

• cudaFuncCachePreferL1: 48 kB L1 cache
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Exercises 6+7: Scalar product
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 6: Scalar product using one block

► Write a CUDA program which computes the scalar product 
between 2 vectors using just one multiprocessor

► Follow the structure from the shared memory session:
• Sum over all elements one thread processes

• Copy the ‘per thread’ results to shared memory

• Reduce the data in shared memory to one end result

► CPU code (exercise06_cpu.c):

float ScalarProduct(float* inputA, 
float* inputB, int size) {

float sum=0;
for( int i=0;i<size;i++) {
sum += inputA[i] * inputB[i];

}
return sum;

}
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 7: Scalar product using multiple blocks

► Modify your program from exercise 6 to work 

with multiple blocks

► Note:

You have to create a separate kernel 

to reduce the partial results of the separate blocks 

to the end result to be sure that 

multiprocessor synchronization is done correctly

► Note:

For real world applications (especially when using cache), 

reductions usually work also without using shared memory.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Atomic Operations

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Atomic operations

► Synchronization between cores 

not provided by programming model

• only complete device synchronization at kernel boundary

• CPU interoperation needed

♦ PCIe latency

• tightly coupled problems difficult to implement

► But device has atomic operations (add, min, max, CAS)

• What do atomic operations do?

• Answer: they allow a read-modify-write sequence 

on a single variable in memory 

without interference of other threads
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Atomic operations

► Example: 2 threads want to do x = x + 1 

on the same variable x at the same time

► What happens actually within machine code (of one 

thread)?

• x is read from memory to register

• value in register is incremented by 1

• value is written back from register to memory of x
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x → r

r → x

r=r+1

x → r

r → x

r=r+1

thread 1
thread 2

any kind of time overlap
between 3-step-sequences
results in one increment to be lost!

Atomic = no overlap will happen!



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Atomic operations

► Atomics often allow easy and efficient parallelization 
of codes which are very hard to parallelize otherwise(!)
• assembly of FEM sparse matrices

• sorting algorithms

► Performance characteristics:
• highly efficient, if no conflict happens

♦ example: stream addition (a[i]=a[i]+1) on Tesla K20x
bandwidth normal addition: 154 GB/s
bandwidth atomic add: 139 GB/s

• Much slower in case of conflict
→ suitable for cases, when conflicts can happen, but are rare

♦ Slow down factor of up to 80, depending on number of conflicts

• Kepler architecture: greatly improved speed of atomics
♦ 32-bit integer atomicAdd() faster(!) than a[i]=a[i]+1 

(in case no conflict happens) 
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Atomic operations

► The following atomic operations are available 
in CUDA device code
• atomicAdd (int32, uint32, uint64, float)

• atomicSub (int32, uint32)

• atomicExch (int32, uint32, uint64, float)
atomicCAS (int32, uint32, uint64)
= compare and swap 
(swap is only executed if data equals a given compare value)

• atomicMin, atomicMax (int32, uint32)

• atomicInc, atomicDec (uint32)

• atomicAnd, atomicOr, atomicXor (int32, uint32)

► 32-bit operations are available 
for both shared and global memory on all devices with CC ≥ 1.2
but 64-bit operations on shared memory require CC ≥ 2.0

► Note: for floating point, only atomicAdd and 
only in single precision available (no min/max and no DP)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Compare-and-swap

► What to do if different kind of atomic operation is required
(e.g. atomicAdd for double precision)?

► CAS-operation, equivalent to atomically done function:

int atomicCAS(int* address,int compare,int value)

{

int old=*address;

if (old==compare)

*address=value;

return old;

}

► This is known to allow to create arbitrary atomic operations
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Compare-and-swap

► Custom atomic operation using CAS:

► Principle: interference by other threads is detected,

and operation is repeated if needed
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x → assumed

atomicCAS(x,assumed,new) → old

f(assumed,…) → new

repeat if old≠assumed



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Compare-and-swap

► atomicCAS exists only for integer types, 
but reinterpretation functions (__…_as_…) help.

Example (atomicAdd for double precision):

typedef unsigned long long ull;

__device__ double atomicAdd(double* address, double inc)
{
ull *addressUll = (ull*)address;
ull oldValue=*addressUll;
ull assumedValue;
do {

assumedValue=oldValue;
ull newValue = __double_as_longlong

(__longlong_as_double(assumedValue)+inc);
oldValue=atomicCAS(addressUll,assumedValue,newValue);

}
while(oldValue!=assumedValue);
return __longlong_as_double(oldValue);

}
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Example: Particle sort using atomic adds

► Particle codes: sorting particles in spacial ‘cells’,

i.e. collecting particles for each cell in a list:

Pseudocode:

for(p in particles) {

cellList[int(p.position/cellSize)].append(p.index);

}

► Parallelize over particles 

→ each list might be changed by any thread

► atomicAdds allows performant parallel implementation

→ exercise 9
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Bucket sort using atomic adds
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Tesla C1060, CUDA using atomic adds

Tesla C2050, CUDA using atomic adds
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

List operations

► Linked-list:

► Append operation using atomicExch (Pseudocode)

newElement = new Element;

previousElement = atomicExch(list.last,newElement);

previousElement.next = newElement;
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List

Element 1 Element 2 Element 3

first last

next next



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Stack/Queue operations

► Stack:

► Append operation using atomicAdd (Pseudocode)

newElement = new Element;
index = atomicAdd(stack.size,1);
stack.dataPtr[index] = newElement;

► Note: this kind of stacks/queues can be used to implement 
dynamic work scheduling over all blocks/threads
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Stack

Element 1 Element 2 Element 3

dataPtr[size-1]dataPtr[0]

dataPtr

size



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Synchronizing multiple blocks

► Atomic operations can be used 

for synchronization between blocks → exercise 10

► Notes:

• Not all blocks execute in parallel for large block numbers

(limited by registers, shared memory usage, number of 

concurrent warps and blocks per multiprocessor), 

so inter-block barrier synchronization can cause deadlocks!

• To make sure data you wrote is visible to other blocks the 
__threadfence() function needs to be called
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Exercises 8-10: Atomic Operations
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 8: reduction using atomic add

► Task:

• Modify the solution of exercise 7 to use atomic adds instead of 

synchronization mechanisms

• Try 3 different versions

♦ add all sum terms directly (atomically) to global variable

♦ add up separate per-thread sums in register, 

then add the per thread results to global result variable

♦ add per-thread results atomically to per-block result 

in shared memory, then add per-block results atomically 

to global result

♦ make sure that type real is “double” otherwise you will get a 

rounding error (Fortran: set real kind “RK = 8”)

• How large are the performance differences?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 9: Sort particles using atomic adds

► Problem:

• An array of particles with coordinates (x,y) should be sorted 

into a 2D grid of cells with width=1 each in both directions

• After the sorting operation, each cell shall have a list of 

indices of the particles which reside there

• The lists are implemented as arrays of fixed size, 

with an additional size variable per list 

(which stores the actual current length):
int list[maxLength];

int listLength;

int myPosition = atomicAdd(&listLength,1);

list[myPosition] = …
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 9: Sorting particles using atomicAdds

► CPU code:

for(int i=0;i<particleCount;i++) {
int x = (int)positionsX[i];
int y = (int)positionsY[i];
int oldListSize = 

cellParticleCounts[y*gridSizeX+x]++;
particleLists[(y*gridSizeX+x)

+gridSizeX*gridSizeY*oldListSize]=i;
}

► To parallelize over the particles (loop i) requires to increment 
the list length (cellParticleCounts[…]) atomically, 
because multiple particles may have the same cell

► Note: in the particlesLists array the list of one cell 
is not stored consecutively but wit stride gridSizeX*gridSizeY
(the same list positions for different particles are stored consecutively)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 9: Sorting particles using atomicAdds

► Task:

• Complete the kernel in exercise09_template.cu/.f90 by creating a 
parallel CUDA version of the CPU implementation in 
exercise09_cpu.c/.f90

• Use atomicAdd() or atomicInc() to avoid race conditions when 
incrementing the list size

• Replace the atomic increment with a plain one. 
Although the kernel now produces wrong results, 
run it to see how large the performance impact 
of using atomic operations is.

► Advanced exercise (C only):

• Replace the global memory reads of the particle positions and the 
writes of the particle indices into the list 
with uncached versions using PTX inline assembly

• Do you see a performance difference?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 10 (optional): synchronization of blocks

► Task:
write a device function which barrier-synchronizes multiple blocks (as 
__syncthreads() does 
for multiple threads in the same block)
• Use the exercise10_template.cu/.f90 file 

to verify that your function works.

► Notes:
• You can use atomicAdd() to count how many blocks 

already reached the barrier.

• If you create a spinlock
while(*syncval!=blockDim.x) {
}
you need declare the variable that is waited on as volatile!

• Include a call to __threadfence() in your function 
to make sure all data is visible to other blocks

• In Fortran volatile attribute is not translated correctly in GPU code (!),
but for reading syncval, also an atomic can be used (e.g. add zero)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Performance Optimization II
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Shared memory banks

► Shared memory is organized into banks:

• Consecutive 32 bit words in shared memory belong to 

consecutive memory banks 

• If there are no bank conflicts 

shared memory is as fast as registers

► Example: 4 memory banks
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0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

array with 32-bit elements

memory banks

…

4 banks → every 4th 32-bit word
resides in the same bank 

n banks → every nth 32-bit word
resides in the same bank 



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Bank conflicts

► What is a bank conflict?
• each bank can not deliver/store more than one 64-bit/32-bit word per clock cycle

► Fermi/Kepler architecture: 
shared memory is organized in 32 banks
• accesses are per warp, 

bank conflicts can happen between all threads in the same warp

► Older GPUs:
shared memory is organized in 16 banks
• accesses are per half-warp, 

bank conflicts can only happen between threads in the same half-warp

► Rule for unconflicted accesses:
• Within a warp/half-warp no 2 threads access the same bank

• Exception: 
♦ broadcast mechanism: 

one 32-bit/64-bit word can be read from arbitrarily many threads

♦ (CC ≥ 3.x) access to sub-words of 32-, 64-bit words.

♦ (CC ≥ 3.x) access to consecutive 32-bit words aligned to 64-bit segments.
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Unconflicted shared memory accesses
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► Unconflicted accesses:

• Each thread accesses 

a different bank

• Right figure: 

arbitrary permutations are allowed



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Conflicted shared memory accesses
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► Conflicted accesses:

• multiple threads of the same half-

warp access the same bank

• left figure: 2-way conflict

• right figure: 8-way conflict



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Broadcasted shared memory accesses
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► Broadcast mechanism:

• multiple threads 

access the same 32 bit word

• right figure: 

broadcast may be mixed 

with unconflicted accesses 

to other banks

• is as fast as unconflicted access

• CC ≤ 1.3: only one word

can be broadcast per cycle

• CC ≥ 2.0: multiple words

can be broadcast per cycle



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Shared memory - Changes in Kepler

► Kepler allows configuration of shared memory

► Can be set globally and per device function

• cudaDeviceSetSharedMemConfig(config)

• cudaFuncSetSharedMemConfig(func, config)

► The supported bank configurations are:

• cudaSharedMemBankSizeDefault (currently 32 bit)

• cudaSharedMemBankSizeEightByte (64 bit mode)

• cudaSharedMemBankSizeFourByte (32 bit mode)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Shared memory in Kepler - 64 bit mode

► Consecutive 64 bit words in shared memory 

belong to consecutive memory banks 

• Suitable for 64-bit data elements, e.g. double precision

► Conflict determination also based on 64-bit words

► Example: 4 memory banks
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0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

array with 64-bit elements

memory banks

…

4 banks → every 4th 64-bit word
resides in the same bank 

n banks → every nth 32-bit word
resides in the same bank 



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Shared memory in Kepler - 32 bit mode

► Consecutive 32 bit words in shared memory 

belong to consecutive memory banks (as for older devices)

► But within same 256 byte segment (64 32-bit words) 

addresses  with a distance of 32 32-bit words

cause no bank conflict

► Example: 4 memory banks
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array with 32-bit elements
32 byte aligned

memory banks

…

4 5 6 7

8 9 10 11

12 13 14 15



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Strided access to shared memory

► Note: if you access shared memory in a strided fashion on CC ≤ 3.0
__shared__ float x[blockDim.x*n];
…x[threadIdx.x*n]…;

you will get bank conflicts if n is a multiple of 2.

► The same for is true for 2-dimensional arrays
when using threadIdx.x on the first array index (and n is again a multiple of 2)
__shared__ float x[blockDim.x][n];
…x[threadIdx.x][j]…;

► How to avoid bank conflicts if strided access patterns are necessary?

► Standard solution: choose the stride to be not a multiple of 2 
by padding you data with one unused element per stride, e.g.

__shared__ float x[blockDim.x*(n+1)];
…x[threadIdx.x*(n+1)]…;

or for 2-dimensional arrays
__shared__ float x[blockDim.x][n+1];
…x[threadIdx.x][j]…;
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Shared memory applications

► Clever splitting of the problem and buffering in shared 

memory can speed up things enormously

► General strategy:

• Copy data from global memory to shared memory

• Do (much) computation on data in shared memory

• Copy data back to global memory

► Examples

• Dense Matrix-Matrix-Multiplication (see PG)

• FFT
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Note on shared memory usage

► As accesses to global memory have long latency

to get full memory bandwidth latency hiding is necessary

• If the number of blocks is larger than the number of 

multiprocessors, block execution will be overlapped 

(multitasking)

as long as the available registers 

and the available shared memory is enough 

for multiple blocks

► Effect: using shared memory 

can result in performance loss (!)

► Advice: decide carefully about the amount of shared 

memory per block you request
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Texture memory

► Access to texture memory is not as fast

as access to shared memory

► But texture fetches are always coalesced and cached

► 2D or 3D textures

• Cache is optimized for access patterns localized in 2D or 3D

• Cache lines are not organized linearly but in 2D or 3D blocks

• Example application: matrix transpose 

(although shared memory is faster)

CUDA - Course 123



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Texture memory applications

► L1 cache is typically faster than texture cache

• per default try to use L1/L2 cache instead of texture cache

► But L1/L2 cache still requires coalesced accesses 
to be efficient

► The texture cache shows performance characteristics 
completely different from the L1/L2 cache
→ uncoalesced accesses, which result 
in good cache reuse, e.g. continuous regions per thread 
as in exercise 4b or exercise 8 
are faster via texture memory (!)

► Other application: prevent cache pollution

• Use texture memory to prevent data to be cached in L1
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Unroll pragma

► Control flow overhead is a more serious issue as on CPU

► So unrolling of loops is recommended 
for computation bound problems

• Note on Fermi/Kepler effect is smaller than for older devices

► The unroll pragma can help here
#pragma unroll 8

for(int i=0;i<n;i++) {

…

}

► In Fortran this does not work, but compilation with –O3 
sometimes results in automatic unrolling
(check PTX assembler output )
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

PTX Assembler Output
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► The CUDA compiler creates output 
in the intermediate device-independent
(assembler-like) language PTX 
which is compiled further 
to device-specific CUBIN code
• E.g. PTX uses virtual registers 

which are assigned to physical registers 
during the PTX-to-CUBIN step

► Viewing the PTX output may 
help to identify performance issues 
(the CUDA compiler produces 
not always optimal code)

► The option ‘--ptx’ forces 
the Nvidia compiler to produce 
a PTX output file

► Fortran: add option keepptx
to –Mcuda, 
e.g. –Mcuda=cuda5.0,cc35,keepptx

.entry _Z6kernelPfS_ (

.param .u64 __cudaparm__Z6kernelPfS__a,

.param .u64 __cudaparm__Z6kernelPfS__b)

{

.reg .u16 %rh<4>;

.reg .u32 %r<5>;

.reg .u64 %rd<8>;

.reg .f32 %f<5>;

.loc    15      5       0

$LBB1__Z6kernelPfS_:

.loc    15      7       0

cvt.u32.u16     %r1, %tid.x;

mov.u16         %rh1, %ctaid.x;

mov.u16         %rh2, %ntid.x;

mul.wide.u16    %r2, %rh1, %rh2;

add.u32         %r3, %r1, %r2;

cvt.u64.s32     %rd1, %r3;

mul.lo.u64      %rd2, %rd1, 4;

ld.param.u64    %rd3, [__cudaparm__Z6kernelPfS__b];

add.u64         %rd4, %rd3, %rd2;

ld.global.f32   %f1, [%rd4+0];

mov.f32         %f2, 0f41300000;        // 11

add.f32         %f3, %f1, %f2;

ld.param.u64    %rd5, [__cudaparm__Z6kernelPfS__a];

add.u64         %rd6, %rd5, %rd2;

st.global.f32   [%rd6+0], %f3;

.loc    15      8       0

exit;

$LDWend__Z6kernelPfS_:

} // _Z6kernelPfS_



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

PTX inline assembly / cache operators

► CUDA 5.0 supports writing inline assembly in C device code

► Example: load and store instructions have modifiers 
to specify caching behavior 
• .ca=cache on all levels

• .cg=cache only in L2

• .cs=do not cache in L1/L2

► Load 32-bit float uncached from global memory:

float* address;
float v;
asm("ld.global.cs.f32 %0,[%1];\n“

: "=f"(v) : "l"(address) : );

► Store 32-bit int uncached to global memory:

asm("st.global.cs.s32 [%0],%1;\n“
::"l"(address),"r"(v));

► Note: setting the caching mode globally can be achieved 
with the nvcc compiler option -Xptxas -dlcm=cg (or cs)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on CUDA Fortran

► The PGI compiler uses intermediate C code 
(CUDA Fortran→CUDA C→PTX Assembler) 
→ sometimes performance issues

• Example: multidimensional arrays 
are sometimes slower than index translation by hand

• Note: the intermediate CUDA C code can be reached 
with the compiler option ‘keepgpu’:
pgfortran –Mcuda=5.0,keepgpu …

► Some features of newer CUDA versions 
are not available in Fortran, yet:

• full unified address space support

♦ pinned arrays cannot be passed to kernels

• allocating memory from GPU code

• printing from GPU code (has bugs)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

NVIDIA Visual Profiler

► Records various kinds of GPU performance-related 
information during program execution

► Usage:
• nvvp (Cuda ≥ 4.0), computeprof (Cuda < 4.0)

• File→New

• Select project name and directory

• In tab ‘Session’ enter

♦ Executable path (‘Launch’)

♦ Working directory, program arguments (optional)

• In tabs ‘Profiler Counters’ and ‘Other Options’ select 
the information you want to record

• Click ‘Start’
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

NVIDIA Visual Profiler

► Meaning of profiler counters:
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gld uncoalesced Number of non-coalesced global memory loads

gld coalesced Number of coalesced global memory loads

gld request Number of global memory load

gld_32/64/128b Number of 32 byte, 64 byte and 128 byte global 
memory load transactions

gst uncoalesced Number of non-coalesced global memory stores

gst coalesced Number of coalesced global memory stores

gst request Number of global memory store requests

gst_32/64/128b Number of 32 byte, 64 byte and 128 byte global 
memory store transactions

local load Number of local memory loads

local store Number of local memory stores

tlb hit Number of instruction or constant memory cache hits

sm cta launched Number of instruction or constant memory cache misses

branch Number of threads blocks launched on a multiprocessor

divergent branch Number of divergent branches within a warp

instructions Number of instructions executed

warp serialize Number of thread warps that serialize on address 
conflicts to either shared or constant memory

cta launched Number of threads blocks executed



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on CUDA Profiler

► The Hardware has a limited amount of profiling registers
• The program will be run multiple times 

to collect all profiling information

• Attention: the results may become useless if the program does not run the same way each 
time

♦ Random Number Generators

♦ OpenMP dynamic scheduling

► Most interesting: GPU time … plot
• Quick overview over time usage in complex application with many kernels

• Computation time vs. data transfer time

• Fortran and accelerator models: can be used to check for unnecessary data copy

► More interesting fields
• Profiler Output

♦ Static shared memory per block

♦ Registers per thread

♦ Occupancy = number of concurrent warps / maximum number of concurrent warps
– Note: it assumes only 1 MP in the GPU, 

it is not considered if there are enough blocks to keep all MPs busy ! 

♦ Branch vs. divergent branch

• Summary Table
♦ Global mem … throughput
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Command line profiling

► CUDA profiling can be enabled manually 

without the visual profiler

• e.g. for profiling MPI-parallel programs

► Either nvprof <options> <executable> <arguments>

► or set the environment variable COMPUTE_PROFILE=1

• Profiling information will be written into a log file

• Additional options

♦ COMPUTE_PROFILE_CSV=1 (switch output from 

‘human readable’ to CSV format for import into visual profiler)

♦ COMPUTE_PROFILE_LOG=<filename> explicitly set logfile name

♦ COMPUTE_PROFILE_CONFIG=<filename> 

set profiler configuration file
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Profiler configuration file

► The profiler configuration file is simply a list 
of the records / counters the profiler should log (with one entry per line)

► The following entries may be allowed in the configuration file, 
(depending on the compute capability of your hardware) 

timestamp, gpustarttimestamp, gpuendtimestamp, streamid, 
gridsize,threadblocksize,dynsmemperblock,stasmemperblock,regperthread, 
memtransferdir, memtransfersize, memtransferhostmemtype, 
local_load, local store, gld_request, gst_request, 
divergent_branch, branch, sm_cta_launched, 
gld_incoherent, gld_coherent, gld_32b, gld_64b, gld_128b, 
gst_incoherent, gst_coherent, gst_32b, gst_64b, gst_128b, 
instructions, warp_serialize, cta_launched, 
prof_trigger_00...prof_trigger_07, 
tex_cache_hit, tex_cache_miss, shared_load, shared_store, 
inst_issued, inst_executed, warps_launched, threads_launched, 
l1_global_load_hit, l1_global_load_miss

► Note: for devices of compute capability 1.x only 4 device counters 
can be used at the same time!

► Note: a detailed description of these records can be found 
in the Command Line Profiler User Guide

► Note: an example ‘profile.conf’ exists that records basic timing information
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Kernel time function

► In kernel code the function clock() returns the value of the 

GPU time counter.

► Fortran: call gpu_time(value)

► The result is in GPU core clock cycles

► The clock rate returned by 
cudaGetDeviceProperties() 

can be used to convert the results to seconds
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Note for the Fermi and Kepler architecture

► Fermi supports 64 bit address space 

but can only do 32 bit integer operations natively

• → Performance penalty on address operations

• If no more than 4 GB of memory is needed, 

the compiler option ‘-m32’ 

can be used to switch back to 32 bit address mode

► Note: CUDA 4.0 unified addressing works only 

in 64 bit mode
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Features of Kepler

► New multiprocessor design (SMX)
• A SMX contains 192 compute cores (old SM: 32) 

and can execute within one cycle instructions from up to 4 warps 
(up to 2 instructions per warp)

• Roughly half GPU clock rate (C2050: 1150 MHz, GTX680: 700 MHz)

• Note: warp size stays 32 threads!

► Kepler I (e.g. GTX680): only 8 SMX (Fermi 14-16 SM)
• Multiprocessors became larger, but fewer

• Little DP performance (1/24 of SP, Fermi C20xx: 1/2)

• Very fast atomics

• Ratio of registers and shared memory to compute cores smaller
♦ Fermi: 32k registers, 16/48 kB shared memory, 32 compute cores per SM

♦ Kepler I: 64k registers, 16/32/48 kB shared memory, 192 compute cores per 
SMX

► Kepler II (Tesla K20X)
• Again high DP performance (1/3)

• Higher memory bandwidth (250 GB/s)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Summary of optimization tactics

► Stencil-based operators (FDTD, Lattice Boltzmann)
• Fermi L1 cache

► Reduction
• 2 Kernels:

♦ A: reduction per thread, then per multiprocessor

♦ B: reduction over the per multiprocessor results

• Atomic adds

► Sparse Matrix-Vector-Multiplication
• Padding of matrix data for coalesced accesses (ELLPACK-R)

• In some cases caching of input vector in texture memory is of advantage

► Dense Matrix-Matrix-Multiplication
• Blocking in Shared Memory

► Fast Fourier Transform
• Blocking in Shared Memory

► Sorting
• Bitonic Merge Sort with blocking in shared memory

• Bucket sort / radix sort can be done using atomic adds

► Assembling of FEM matrices
• Atomic adds
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::

GPU Programming using CUDA

Exercise 11: Small matrix-matrix multiplications
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Computation task

► A multiplication of 2 matrices A (N x N), B (N x N)

can be done independently for each element of C:

► The operation can be done easily using one CUDA block 
of sizes N x N

► Note: the problem is of course too small 
to use all multiprocessors efficiently
• But if many such matrix multiplications need to be done 

each CUDA block can process one MM
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Optimized version

► Disadvantage of naïve CUDA implementation: 

each element of A and B is read N times

► Buffer the matrices A,B in shared memory

► Algorithm:

• Each thread copies one element of the N x N matrices 

A and B to shared memory

• Each thread computes the sum for one element of matrix C

► Advantage: each element of A or B is only read 

once from global memory
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Task

► Complete the template program exercise11_template.cu 
to copy matrices A,B to shared memory before computation.

► Use 2D static arrays for the shared data:
__shared__ float sharedA[T][T];
__shared__ float sharedB[T][T];

► Note: the program computes MMs for many matrices of the same size N x N
• Each block processes one matrix multiplication

• The multiple matrices A(i) (or B(i) or C(i)) are stored consecutively in memory

► Note: the matrices in global memory Auv, Buv, Cuv are stored 
in a linear array with the mapping

indexlinear = m*N2 + u*N + v

where m is the index of the small NxN matrix 
in the list of the many small matrices to be multiplied
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Advanced Exercise

► Is it better to store the matrix elements Bij

as B[i][j] or B[j][i]in shared memory? 

Why? How is it for Aij?

• Hint: think about bank conflicts 

during the accesses to shared memory

• Can you think of a trick to use the ‘bad’ storage ordering for B 

and still get performance as fast as for the good ordering?

► Try to change the shared arrays to 1-dimensional arrays

(Fortran only)

Do you see a performance change? Why?
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Answers

► Is it better to store the matrix elements Bij as B[i][j] or as 
B[j][i]? 
• Answer: B[i][j] is considerably faster

► Why? 
• Answer: because the shared array is accessed as 
shared_b[l][threadIdx.x] when using B[i][j]
and as shared_b[threadIdx.x][l] when using B[j][i].
The second way will cause a bank conflict on every access

► How is it for Aij?
• Answer: it matter much less because shared_a is read either 

as shared_a[threadIdx.y][l]
or as shared_a[l][threadIdx.y]
which does not depend on threadIdx.x.

The only location it matters is when reading A from global to shared 
memory which happens much fewer times.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Answers

► Can you think of a trick to use the ‘bad’ storage ordering for B 

and still get performance as fast as the for the good ordering?

• Yes, use the standard trick for strided shared memory accesses 
and allocate shared_b as

__shared__ float 

shared_b[matrixSize][matrixSize+1];

► Try to change the shared arrays to 1-dimensional arrays

(Fortran only)

Do you see a performance change? Why?

• Because the Cuda Fortran to Cuda C compiler also converts 

Fortran 2D arrays to C 1D arrays, but the Cuda C code 

is often more efficient if used on 1D arrays directly in Fortran
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::

GPU Programming using CUDA

Advanced Features

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Getting hardware information

► Number of devices in system:
cudaGetDeviceCount(int ∗ count);

► Name and properties of device:
cudaGetDeviceProperties(cudaDeviceProp∗ prop, 

CUdevice dev);

► Note: try running the example program deviceinfo.cu, 
it prints most of the information returned by 
cudaGetDeviceProperties()

CUDA - Course 146



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Getting hardware information
► Example: GTX 680 hardware information 

(deviceinfo.cu results):

device name: GeForce GTX 680
global memory: 2147155968 bytes
maximum shared memory per block: 49152 bytes
maximum number of registers per block: 65536
warp size: 32
maximum number of threads per block: 1024
maximum block dimensions : (1024,1024,64)
maximum grid dimensions: (2147483647,65535,65535)
maximum number of threads per multiprocessor: 2048
GPU clock frequency: 705.500000 MHz
memory clock frequency: 3004.000000 MHz
total constant memory: 65536 bytes
compute capability: 3.0
can execute multiple kernels concurrently: yes
can overlap data transfer and computation: yes
can overlap data transfers from/to device: no
can map host memory: yes
unified address space enabled: yes
number of multiprocessors: 8
compute mode: default (multiple processes/threads per device)
kernel timeout enabled: no
ECC memory enabled: no
is integrated device: no
memory bus width: 256 bits
size of L2 cache: 524288 bytes
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Unified address space

► All types of memory the device can access 
reside in the same address space. 
Pointers to all of these memories can directly be passed to kernels.
• Global memory

• Shared memory

• Constant memory

• Page-locked host memory

• Global memory of other GPUs on the same host (‘GPUdirect’)

► Prerequisites:
• Fermi GPU (CC ≥ 2.0)

• 64 bit address space

• CUDA 4.0

► Note: in Fortran not really supported, yet
• Consequence: host memory can not be accessed directly

♦ pinned arrays cannot be passed to kernels

♦ but access of memory of other GPUs should be possible
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Zero-copy host memory access / peer-to-peer access

► Zero-copy host memory access
• direct dereferencing of pointers to CPU memory on device

• works only on page-locked host memory

• with unified address space no further conditions

• older devices:
♦ enable zero-copy access for device:
cudaSetDeviceFlags(cudaDeviceMapHost);

♦ allocate page-locked host memory with device mapping:
cudaHostAlloc(&ptr,size,cudaHostAllocMapped);

♦ translate CPU address to GPU address:
cudaHostGetDevicePointer(&gpu_ptr,cpu_ptr,0);

• Fortran: same API functions, but works on type(c_ptr), type(c_devptr)
→ is necessary as CUDA Fortran is not aware of unified addressing

► Peer-to-peer-access
• Prerequisites: unified address space, both GPUs on same PCIe bus

• Enable peer-to-peer-access from active device to peer device:
cudaDeviceEnablePeerAccess(peer_device,0);
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Streams

► Streams are a mechanism to allow and manage 

concurrent execution of multiple kernels or

memory copy operations and kernels

► cudaStream_t stream;

► Basic principle of operation:

• Each operation on the device is attached to a stream

(calls that do not provide a stream handle are attached to the 

default stream, called ‘stream 0’)

• Operations on the same stream are always executed in serial

• Operations on different streams may be executed in parallel
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Usage of streams

► Creation
cudaStream_t stream;
cudaStreamCreate(&stream);

► Cleanup
cudaStreamDestroy(stream);

► Asynchronous copy attached to a stream
cudaMemcpyAsync(dest, src, size, type, stream);

• Note: concurrency only works with page-locked memory!

• Note: PCIe bus is bidirectional. CC ≥ 3.0 can do 2 copies 
(1 to device / 1 to host) concurrently

• Note for Fortran: memcpy operations exist also
♦ but do not need a type (direction is derived from src and dest types)

♦ size is in array elements, not in bytes (!)

► Kernel call attached to a stream
MyKernel<<<grid, block, shared_mem, stream>>>(…);

► Waits for all operation of a specific stream
cudaStreamSynchronize(stream);

► Wait for all operations of all streams (including stream 0)
cudaDeviceSynchronize();

CUDA - Course 151



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Notes on streams

► Concurrency between kernel execution and copy from/to device 

is possible exactly if the device property ‘deviceOverlap’ is set

► Concurrency between multiple kernels is possible 

exactly if the device property ‘concurrentKernels’ is set

• Note: very useful if many small kernels need to be executed!

► Some tasks 

(page-locked host memory allocation, device memory allocation, 

device-to-device memory copy, operations to stream 0) 

disable concurrency between an operation before and after them
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Executing parallel streams

► Special care needs to be taken when executing streams
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With one copy engine second kernel has to wait for first one to finish.

cudaMemcpyAsync(dev_a0,…,stream0);

cudaMemcpyAsync(dev_b0,…,stream0);

kernel<<<block,grid,0,stream0>>>

(dev_a0,dev_b0,dev_c0);

cudaMemcpyAsync(host_c0,…,stream0);

cudaMemcpyAsync(dev_a1,…,stream1);

cudaMemcpyAsync(dev_b1,…,stream1);

kernel<<<block,grid,0,stream1>>>

(dev_a1,dev_b1,dev_c1);

cudaMemcpyAsync(host_c1,…,stream1);
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Executing parallel streams II

► Solution: Reorder copy operations
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Kernels can run in parallel now.

cudaMemcpyAsync(dev_a0,…,stream0);

cudaMemcpyAsync(dev_b0,…,stream0);

kernel<<<block,grid,0,stream0>>>

(dev_a0,dev_b0,dev_c0);

cudaMemcpyAsync(dev_a1,…,stream1);

cudaMemcpyAsync(dev_b1,…,stream1);

kernel<<<block,grid,0,stream1>>>

(dev_a1,dev_b1,dev_c1);

cudaMemcpyAsync(host_c0,…,stream0);

cudaMemcpyAsync(host_c1,…,stream1);
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Hyper-Q in Kepler K20x
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- Only C&P and R&X run concurrently
- Only one work queue - All streams can run concurrently

- 32 work queues 
Notes:
• CUDA 5.5 and CC ≥ 3.5 allow 32 MPI-processes to use the device concurrently in 

proxy mode.
• On CRAY: export CRAY_CUDA_PROXY=1 



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Using multiple GPUs

► With CUDA 4.0 or higher:

• cudaSetDevice(int device_index); 
can be used to switch between devices

• All following CUDA API calls are using the active device
♦ Memory allocations

♦ Stream creation

♦ …

• Note: streams are always bound to one device
→ it is not possible to attach operations on device A 
to a stream belonging to device B or vice versa

• Note: cudaDeviceSynchronize() waits only for operations 
on the active device (!)

• When programming multithreaded, 
the active device (‘device context’) 
is set for the calling thread only,
each thread may have a different active device
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Using multiple GPUs

► CUDA 4.0 example for 2 GPUs:

cudaSetDevice(0);

…start some asynchronous operations for device 0…

…(cudaMemcpyAsync or kernel calls)…

cudaSetDevice(1);

…start some asynchronous operations for device 1…

cudaSetDevice(0); 

cudaDeviceSynchronize();

cudaSetDevice(1); 

cudaDeviceSynchronize();
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Using multiple GPUs

► Older CUDA versions:

• cudaSetDevice(int device_index); 

can be used to set device for host thread

• Restriction:

after usage of device device context cannot be changed again 

for the current thread

(except by usage of low-level driver API cuCtx… functions)

• Simplest solution:

create multiple host threads with OpenMP,

each thread operates only on one device
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Using multiple GPUs with OpenMP

► OpenMP Example for 2 GPUs:

#pragma omp parallel
{

int thread=omp_get_thread_num();
if (thread==0) {
cudaSetDevice(0);
…cuda code for device 0…
cudaDeviceSynchronize();
…
} else if (thread==1) {
cudaSetDevice(1);
…cuda code for device 1…
cudaDeviceSynchronize();
…
}

}

► Note: Even with CUDA 4 sometimes using multiple (OpenMP) 
host threads when working with multiple GPUs has advantages:
• No need to switch between devices all the time

• No need to use asynchronous copies
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Using multiple GPUs with OpenMP (Fortran)

► OpenMP Example for 2 GPUs:

!$omp parallel
thread = omp_get_thread_num()
if (thread==0) then
print *,'starting computation on GPU 0‘
error = cudaSetDevice(0)
…cuda code for device 0…

else if (thread==1) then
print *,'starting computation on GPU 1‘
error = cudaSetDevice(1)
…cuda code for device 1…

end if
!$omp end parallel
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Data transfer between devices

► With unified address space:

• cudaMemcpy() with kind = cudaMemcpyDefault

works for all kinds of copies including peer-to-peer copy

• Note: kind = cudaMemcpyDeviceToDevice

does not work for peer-to-peer copy!

► With CUDA 4.0 but CC < 2.0

• cudaMemcpyPeer(void* destAddress, int destDevice,

void* srcAddress, int srcDevice, size_t bytes);

• works always, but direct peer-to-peer copy is only done 

if hardware supports it

• Note: call is asynchronous, 

but serialized with other operations on stream 0

(like kernel calls without stream specification) !
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

PCIeNetwork

Using multiple GPUs on different nodes

► What if you want to use more GPUs 
than are available to one host / node?

► Answer: distributed memory parallelism,
e.g. with MPI (Message Passing Interface)
• There are separate courses on MPI at HLRS

► Principle: multiple CPUs in a cluster cooperate 
by sending messages over a fast local network (Infiniband, etc.)

► MPI+CUDA: no problem in principle, 
but for cooperation messages have to be transferred 3 times: 

► Compilation of MPI+CUDA programs: 
both MPI and CUDA have their own compiler drivers (mpicc and nvcc)
• Suggestion: linking of CUDA code to other executables is quite simple

♦ compile CUDA code with nvcc to an object file with ‘-c’

♦ link the CUDA object file into the executable with mpicc: 
for  linking only the library libcudart is required (‘-lcudart’)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Texture memory

► Resides in global memory

• But read only

♦ Note: with CUDA ≥ 3.1 and Fermi 
‘surface memory’ allows read/write

• And with 8 kB cache per multiprocessor

► typical applications:

• Heavily reused read only data with irregular access patterns

♦ sometimes faster than Fermi L1 cache

♦ Note: Access patterns unsuitable for L1 cache 
perform sometimes better with texture cache 
(example: pattern as in exercise 4 a)

► Can be configured to use optimized caching 
for 1-, 2- or 3-dimensional locality in access patterns
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can texture memory be used?

► A region of global memory can be bound as texture memory by 
using texture references:

► Step 1: declaring the texture reference

texture<Datatype, Dimension> texRef;

Note: the parameter Dimension is optional

► Note: texture references (texRef) need to be defined 
as plain global variables (not: arrays, local variables) 
and cannot be passed as kernel arguments

► Note: texture/surface memory is not implemented
in Cuda Fortran
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can texture memory be used?

► Step 2: telling the texture reference which array 
binding the array of global memory to the texture reference:

• For 1D textures
cudaChannelFormatDesc channelDesc =            

cudaCreateChannelDesc<Datatype>();

cudaBindTexture( NULL, &texRef, memoryPtr, 

&channelDesc, memorySize );

with
memorySize = sizeof(Datatype) * arraySize

► Note: the cudaChannelFormatDesc is a helper struct to tell the 
bind function which datatype

► Note: binding means an existing region of global memory can be 
accessed through the texture reference. 
The original data is not copied(!)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can texture memory be used?

• for 2D-textures

cudaChannelFormatDesc channelDesc =            
cudaCreateChannelDesc<Datatype>();

cudaBindTexture2D( NULL, &texRef, memoryPtr, 
&channelDesc, arraySizeX, arraySizeY, pitch );

where pitch specifies the offset in bytes 
to move from one ‘line’ to the next in memory.
It is used to calculate the address of an element:

address = baseAddr + 
pitch*indexY + sizeof(Datatype)*indexX

• Note: the pitch is required to be a multiple of a certain page-size given by 
cudaDeviceProp::texturePitchAlignment (Kepler: 512 bytes). 
If your arraySizeX is not already aligned, padding must be added(!)

• If your arraySizeX is already aligned simply choose
pitch = sizeof(Datatype) * arraySizeX
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can texture memory be used?

► Step 3: now the texture memory can be used 
from inside the kernel:

void __global__ myKernel() {
...
... = ... tex1D( tex_ref_1d, index ) ... ;
... = ... tex1Dfetch( tex_ref_1d, index ) ... ;
... = ... tex2D( tex_ref_2d, indexX, indexY ) ... ;
... = ... tex3D( tex_ref_3d, 

indexX, indexY, indexZ ) ... ;
...

}

► Note: the functions tex1D, tex2D, tex3D
take a 32-bit float value as index, 
tex1Dfetch takes a 32-bit int value as index.
• for large 1D-arrays tex1Dfetch should be used 

to avoid rounding problems (!)

CUDA - Course 167



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Advanced features of texture memory

► Linear filtering:

• It is possible to configure texture memory to 

do linear/bilinear/trilinear interpolation of 

array data
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Constant memory

► Resides in separate constant memory space

• Read only

• With 8 kB cache per multiprocessor

► Restrictions:

• Not dynamically allocable

• Maximum size is 64 kB per device
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

How can constant memory be used?

► Global variables or arrays are being declared 
to reside in constant memory 
by the __constant__ declaration specifier: 

__constant__ float data[size];
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Accessing constant memory from GPU code

► Constant memory can be accessed normally 
from device code:

__constant__ float data[size];

void __global__ myKernel() {
...
= ...data[...]...;
...

}

► Note: on Fermi/Kepler constant memory is also used implicitly 
to store kernel ‘function call’ arguments
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Accessing constant memory from host code

► Constant memory cannot be accessed directly from host code, but 
copied:

cudaError_t cudaMemcpyToSymbol(const char* symbol, 
const void* src, size_t count, size_t offset, 
enum cudaMemcpyKind kind);

cudaError_t cudaMemcpyFromSymbol(void* dst, 
const char* symbol, size_t count, size_t offset, 
enum cudaMemcpyKind kind);

► Note: in host code constant memory variables or arrays 
are not variables or arrays but symbols
• A symbol is a string identifier (type = const char*) 

known by the CUDA runtime

• Do not try to read, write or use pointer arithmetic 
on constant memory symbols (!)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

C++ classes

► For devices of compute capability ≥ 2.0 it is easily possible 
to use non-polymorphic C++ classes
• non-polymorphic = no virtual functions

► Syntax:
class foo {

int x,y,z;
float *a,*b;

__device__ foo(…) { // constructor as device function
…

}
__device__ void f(…) { // method as device function

…
}
…

};

► Note: kernels (__global__) functions may not be static class members

► Note: static class data members cannot be accessed from device code
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Polymorphic C++ classes

► are possible with CC ≥ 2.0 but has an important restriction

► Objects allocated in host code can only be used on host !

► Objects allocated in device code can only be used 
on device !

• Remark: use new and delete operators in device code

► Reason: virtual function table is different 
for host and device classes

► Note: STL containers do not work on device, 
as methods are not declared as device functions

• Thrust template library (open source) 
can do some container operations 
(called from host, with data on GPU)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

IEEE-exact arithmetic

► Default behavior:

• rounding-mode: round-to-nearest-even

• T10: SP denormals are flushed to zero, 

Fermi: SP denormals are kept 
(use –ftz=true for old behavior)

♦ DP denormals are kept on both architectures

♦ Note: denormal computations are full speed, contrary to x86!

• Float additions and multiplications are sometimes replaced 

by fused-multiply-adds (FMA) by choice of the compiler!

♦ This can be suppressed by replacing * and + with

__fadd_rn(x,y), __dadd_rn(x,y)

__fmul_rn(x,y), __dmul_rn(x,y)

__fmaf_rn(x,y,z), __fma_rn(x,y,z)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

IEEE-exact arithmetic

► Controlling rounding modes:
• Can be controlled per function, suffix specifies rounding:
_rn: round to nearest even
_rz: round towards zero
_ru: round upwards (towards positive infinity)
_rd: round downwards (towards negative infinity)

• Functions:
__fadd_r?(x,y), __dadd_r?(x,y): add x+y
__fmul_r?(x,y), __dmul_r?(x,y): multiply x*y
__fmaf_r?(x,y,z), __fma_r?(x,y,z): fused-multiply-add x*y+z
__frcp_r?(x), __drcp_r?(x): reciprocal 1/x
__fdiv_r?(x,y), __ddiv_r?(x,y): division x/y
__fsqrt_r?(x), __dsqrt_r?(x): square root of x

► Note: see Appendix D in PG for more information 
on IEEE arithmetic functions
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::

GPU Programming using CUDA

Exercise 12: Advanced features

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU 1

halos

Exercise 12: Using 2 GPUs using MPI

► Task:

• Implement a 2D finite difference code on 2 GPUs

• Algorithm:

♦ each field point requires the values 

of each its left, right, top, bottom neighbor

• Parallelization technique: domain decomposition
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 12: Using 2 GPUs using MPI

► Single-GPU CUDA kernel for heat equation in 2D:

void __global__ diffusion(int sizeX,int sizeY, 
float* input,float* output) {

int myX=blockIdx.x*blockSizeX+threadIdx.x+1;
int myY=blockIdx.y*blockSizeY+threadIdx.y+1;
if (myX>=sizeX-1 || myY>=sizeY-1)
return;

int index=myY*sizeX+myX;

output[index] = input[index]*(1.-4.*alpha) + 
alpha*(input[index-1] + input[index+1] + 

input[index-sizeX] + input[index+sizeX]);

}
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 12: Using 2 GPUs with MPI (C)

► The exercise12_mpi_template.cu contains the distribution of the 

field to two processes with one GPU each. 

Only the host/device copy of boundary is missing.

► Note: Use GNU compiler environment for Cray wrappers

• module swap PrgEnv-cray PrgEnv-gnu

► Note: To compile use CUDA compiler for .cu files and Cray MPI 

compiler wrapper for host code and linking

• nvcc -c -arch=compute_35 exercise12_mpi_template.cu

• cc exercise12_mpi_main.c exercise12_mpi_template.o

► Note: To access one GPU with two MPI processes concurrently

• export CRAY_CUDA_PROXY=1

• aprun -n 2 ./a.out
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 12: Using 2 GPUs with MPI (Fortran)

► The exercise12_mpi_template.f90 contains the distribution 

of the field to two processes with one GPU each. 

Only the host/device copy of boundary is missing.

► Note: To compile use Cray MPI compiler wrapper

• ftn -Mcuda,cc35,cuda5.5 exercise12_mpi_template.f90

► Note: To access one GPU with two MPI processes concurrently

• export CRAY_CUDA_PROXY=1

• aprun -n 2 ./a.out
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GPU Programming using CUDA

CUDA Libraries

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Overview

► NVIDIA provides with CUDA 5 important libraries for

• simple dense linear algebra (CUBLAS)

• sparse linear algebra (CUSPARSE)

• Fast Fourier Transform (CUFFT)

• pseudorandom number generation (CURAND)

► Mode of operation:

• GPU memory allocation and copy is done manually by user 
with the normal CUDA API (cudaMalloc(), cudaMemcpy())

• Library functions are called from host and get passed pointers 
to global device memory

• Exception: CURAND contains device functions 
to generate random numbers from GPU code
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

API initialization (CUBLAS and CUSPARSE)

► All libraries require certain data structures to be initialized before they can 
be used 

► CUBLAS and CUSPARSE require handles to be created for use with all 
following library calls

► CUBLAS:
cublasHandle_t cublasHandle;
cublasStatus_t status = cublasCreate(&cublasHandle);
…
cublasDestroy(cublasHandle);

► CUSPARSE:
cusparseHandle_t cusparseHandle;
cusparseStatus_t status = 

cusparseCreate(&cusparseHandle);
…
cusparseDestroy(cusparseHandle);
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

API initialization (CUFFT)

► CUFFT: a plan needs to be created, which contains the data needed for doing FFTs 
of a certain dimension, size and type:

cufftResult
cufftPlan1d(cufftHandle* plan, int size, cufftType type, int batch);
cufftResult
cufftPlan2d(cufftHandle* plan, int sizeX, int sizeY, cufftType type);
cufftResult
cufftPlan3d(cufftHandle* plan, int sizeX, int sizeY, int sizeZ, 

cufftType type);

► Type may be:
• CUFFT_R2C = Real to complex (interleaved)

• CUFFT_C2R = Complex (interleaved) to real

• CUFFT_C2C = Complex to complex, interleaved

• CUFFT_D2Z = Double to double‐complex

• CUFFT_Z2D = Double‐complex to double

• CUFFT_Z2Z = Double‐complex to double‐complex

► batch allows to do multiple FFTs with one call (using consecutive array elements)

► Plans have to be released with the cufftDestroy() function:
cufftResult cufftDestroy(cufftHandle plan);
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

API initialization (CURAND)

► CURAND host API: a ‘generator’ needs to be created:

curandStatus_t curandCreateGenerator
(curandGenerator_t∗ generator, curandRngType_t type)

► Type specifies the used method of random number generation. Possible values are:

CURAND_RNG_PSEUDO_DEFAULT
CURAND_RNG_PSEUDO_XORWOW
CURAND_RNG_QUASI_DEFAULT
CURAND_RNG_QUASI_SOBOL32
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
CURAND_RNG_QUASI_SOBOL64
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64

► Generators need to be freed with curandDestroyGenerator():
curandStatus_t
curandDestroyGenerator(curandGenerator_t generator)

► CURAND device API: curand_init(…,&state) is used to initialize 
the generator state. No destroy is necessary with device API.
State can be different data structures, depending on generation mechanism.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Streams

► The libraries allow setting the CUDA stream for a handle:

cufftResult
cufftSetStream( cufftHandle plan, cudaStream_t stream )

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

cusparseStatus_t
cusparseSetKernelStream(cusparseHandle_t handle, 

cudaStream_t streamId )

curandStatus_t
curandSetStream (curandGenerator_t generator, 

cudaStream_t stream)

► Note: if many small kernels are executed, e.g. with CUBLAS, 
setting streams allows overlapping concurrent execution with Fermi devices
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUBLAS functions

► BLAS standard is completely implemented
• Level 1: vector operations

• Level 2: matrix-vector operations

• Level 3: matrix-matrix operations

►

Naming conventions:
all functions for mathematical operations are of the form

cublasStatus_t cublas<T><operation>(cublasHandle_t handle, ...)

• A single letter ‘T’ is used for the datatype
(S=float, D=double, C=complex float, Z=complex double)

• Example: compute 2-norm of vector (single or double precision)

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,
const float* x, int incX, float* result)

cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
const double* x, 
int incX, double* result)

• Note: most functions have stride (increment) specifications of array elements (here: incX) 
for strided storage of vectors
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUBLAS functions
► 2-norm of vector

cublasStatus_t cublas<T>nrm2(cublasHandle_t handle, int n,
const T* x, int incX, T* result)

► Sum of absolute values of vector

cublasStatus_t cublas<T>asum(cublasHandle_t handle, int n,
const T* x, int incX, float *result)

► Scalar product

cublasStatus_t cublas<T>dot (cublasHandle_t handle, int n,
const T* x, int incX, 
const T* y, int incY,
T* result)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUBLAS functions

► Vector addition with scaling

cublasStatus_t cublas<T>axpy(cublasHandle_t handle, int n,
const T* alpha,
const T* x, int incX,
T* y, int incY)

► Matrix-vector multiplication

cublasStatus_t cublas<T>gemv(cublasHandle_t handle, 
cublasOperation_t transpose,
int m, int n,
const T* alpha,
const T* A, int pitchA,
const T* x, int incX,
const T* beta,
T* y, int incy)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUBLAS functions

► Matrix-matrix multiplication

cublasStatus_t
cublas<T>gemm(cublasHandle_t handle,

cublasOperation_t transposeA,   
cublasOperation_t transposeB,
int m, int n, int k,
const T* alpha,
const T* A, int pitchA,
const T* B, int pitchB,
const T* beta,
T* C, int pitchC)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUSPARSE csr storage format

► Sparse matrix is stored in compressed sparse row (CSR) format

► Matrix A =

► Nonzero elements are stored row-wise in 1D-array

matrixAValues =

► Column index array stores positions in row in original matrix
matrixAColumnIndices = 

► Row pointer array stores beginning of original matrix rows 
in matrixAValues and matrixAColumnIndices
matrixARowPointers = 
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUSPARSE functions

► Sparse matrix-vector multiplication with matrix 
in compressed sparse row format

cusparseStatus_t 
cusparse<T>csrmv(cusparseHandle_t handle,       

cusparseOperation_t transpose,
int m, int n, int nnz, T* alpha, 
const cusparseMatDescr_t descrA,
const T* matrixAValues,
const int* matrixARowPointer, 
const int* matrixAColumnIndices,
const T* x, T* beta, T* y)
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUSPARSE matrix description
► CUSPARSE matrices need a matrix description data structure

typedef struct {
cusparseMatrixType_t MatrixType;
cusparseFillMode_t   FillMode;
cusparseDiagType_t   DiagType;
cusparseIndexBase_t  IndexBase;

} cusparseMatDescr_t;

► The data structure should be initialized with
cusparseStatus_t 
cusparseCreateMatDescr( cusparseMatDescr_t *descrA )

and released with
cusparseStatus_t 
cusparseDestroyMatDescr( cusparseMatDescr_t descrA )

►

The fields of cusparseMatDescr_t specify details of the matrix storage 
• compact symmetric, hermitian, triangular matrix storage

• 0-based or 1-based indexing

► Note: cusparseCreateMatDescr() initializes the description 
to unsymmetrical matrix with 0-based indexing
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CUFFT functions

► A Fourier Transform can be executed according to the created plan by the functions

cufftResult 
cufftExecC2C(cufftHandle plan, cufftComplex *idata,

cufftComplex *odata, int direction );

cufftResult 
cufftExecR2C(cufftHandle plan, cufftReal *idata,

cufftComplex *odata );

cufftResult 
cufftExecC2R(cufftHandle plan, cufftComplex *idata, 

cufftReal *odata );

cufftResult 
cufftExecZ2Z(cufftHandle plan, cufftDoubleComplex *idata,

cufftDoubleComplex *odata, int direction );

► The direction parameter specified forward or reverse Fourier transform. It may be
• CUFFT_FORWARD

• CUFFT_INVERSE 
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CURAND host functions

► CURAND host functions can generate arrays of random numbers in global device 
memory
• 32 and 64 bit signed integers and floats and doubles are supported

► Integers:
curandStatus_t 
curandGenerate(curandGenerator_t generator, 

unsigned int ∗ outputPtr, size_t num);
curandStatus_t 
curandGenerateLongLong

(curandGenerator_t generator, 
unsigned long long ∗ outputPtr, size_t num);

• Produces random numbers over the full range of the integer type (all bits are random)

► Floating point:
curandStatus_t
curandGenerateUniform(curandGenerator_t generator,

float∗ outputPtr, size_t num)
curandStatus_t 
curandGenerateUniformDouble(curandGenerator_t generator, 

double∗ outputPtr, size_t num)

• Produces random numbers in (0,1]
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CURAND host functions

► For floating point normal and log-normal distributions can also be generated:

curandStatus_t
curandGenerateLogNormal(curandGenerator_t generator,

float∗ outputPtr, size_t n, 
float mean, float stddev);

curandStatus_t
curandGenerateLogNormalDouble(curandGenerator_t generator, 

double∗ outputPtr, size_t n, 
double mean, double stddev);

curandStatus_t
curandGenerateNormal(curandGenerator_t generator, 

float∗ outputPtr, size_t n, 
float mean, float stddev);

curandStatus_t
curandGenerateNormalDouble(curandGenerator_t generator, 

double∗ outputPtr, size_t n, 
double mean, double stddev);
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

CURAND device functions

► From device code single random numbers can be generated 
with a device function call:

__device__ unsigned int curand (…∗ state);
__device__ unsigned long long curand (…∗ state);
__device__ float curand_uniform (…* state);
__device__ double curand_uniform_double (…∗ state);
__device__ float curand_normal (…∗ state);
__device__ double curand_normal_double (…∗ state);
__device__ float curand_log_normal (…∗ state, 

float mean, float stddev);
__device__ double curand_log_normal_double (…* state, 

double mean, double stddev);

► Note: when generating random numbers in parallel in multiple threads, 
each thread should have a different state data structure!
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::

GPU Programming using CUDA
Exercises 13: Conjugate Gradient with CUBLAS and CUSPARSE
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 13: Conjugate Gradient

► Conjugate Gradient is an iterative solver for symmetric 
positive definite matrices. It is typically used 
to solve sparse linear equation systems

► The only matrix or vector operations it needs is:

• copy of vectors

• sparse matrix-vector-multiplication

• scaling of vectors (vector-scalar-multiplication), 
addition of vectors and combinations thereof (saxpy, daxpy)

• scalar product, 2-norm of vector

► exercise13_cpu.c contains a CPU implementation 
already using the csr data storage format of CUSPARSE
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 13: Conjugate Gradient

► Task:
• in exercise13_template.cu 

the needed initializations of CUBLAS, CUSPARSE, 
GPU memory allocation and copy of A, x and b
are already done

• replace the CPU code in the matrix/vector operation helper functions with calls 
to CUBLAS or CUSPARSE

♦ csrMatrixVectorMultiplication

♦ axpy

♦ scaleVector

♦ scalarProduct

♦ vector2NormSquare

► Note: the template file in the initial state will crash, 
because above functions already get passed GPU pointers,
but still contain the CPU code from exercise13_cpu.c 

► Advanced exercise: check in profiler which kernels take the most time.
Can you gain performance by replacing some library calls 
with your own kernels?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 13: Conjugate Gradient

► Algorithm:

repeat until α is small enough {

}
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 13: Conjugate Gradient

► Notes
• For the sparse matrix vector multiplication the functions

cusparseScsrmv() (single precision) and
cusparseDcsrmv() (double precision) can be used

♦ The matrix is already in the correct csr format, no conversion is necessary

• For scalar product and norm
cublasSdot(), cublasDdot(), cublasSnrm2(), cublasDnrm2()
can be used

♦ Warning: cublasSnrm2() has a bug. 
It returns NAN when the vector contains denormalized numbers.
Better use cublasSdot() for vector 2-norm!

• For vector addition and scaling
cublasSscal(), cublasDscal(), 
cublasSaxpy(), cublasDaxpy()
can be used

• The files cublas_utils.h and cusparse_utils.h
contain the functions cublasVerify() and cusparseVerify()
for simplified error handling.

• Link executable with –lcublas –lcusparse
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::

GPU Programming using CUDA

Introduction to OpenACC
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Introduction to OpenACC

► Accelerator programming model
• Device code is written like (serial) CPU code

• Data is not explicitly copied to GPU (looks like working on CPU data structures)

• Compiler tries automatic parallelization (loop vectorization, etc.)

• Intermediate CUDA C or OpenCL code (CAPS, PGI) or PTX assembly (Cray) is 
generated

► Simple example:

void VectorAdd(unsigned int size,                         
float* a, float* b, float* c) {

#pragma acc parallel loop
for(int i=0;i<size;i++) {
c[i]=a[i]+b[i];

}
}

CUDA - Course 205



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Parallel construct

► What is the parallel construct?

• Requests that code is to be executed on accelerator device

♦ C: next statement or ‘{ }’-block

♦ Fortran: region between ‘parallel’ and ‘end parallel’

• Without further pragmas code is to be executed 

in serial on device

• ‘manual’ mode of parallelization

♦ parallelization of code has to be specified explicitly

♦ No attempt is made, e.g. to find parallelizable loops
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Parallel construct

► Syntax:

• C:
#pragma acc parallel

{

...

}

• Fortran:

!$acc parallel

...

!$acc end parallel
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Kernels construct

► What is the kernels construct?

• Requests that code is to be executed on accelerator device

♦ C: next statement or ‘{ }’-block

♦ Fortran: region between ‘kernel’ and ‘end kernel’

• ‘automatic’ mode of parallelization

♦ Compiler tries to find parallelizable code (loops, etc.) and 

automatically distributes work to CUDA blocks/threads

♦ ‘kernels’ → multiple kernels may be generated

(by compiler decision)

♦ But further pragmas are still possible (to guide compiler)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Kernels construct

► Syntax:

• C:
#pragma acc kernels

{

...

}

• Fortran:

!$acc kernels

...

!$acc end kernels
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Loop construct

► Within parallel construct:

► Tells the compiler that loop iterations are independent 
and shall be executed in parallel

C:
#pragma acc parallel
{

#pragma acc loop
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

}

Fortran:
!$acc parallel
!$acc loop
do i=1,size
c(i)=a(i)+b(i)  

end do
!$acc end loop
!$acc end parallel
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Combined parallel/loop construct

► A parallel region which consists wholly of a single loop can be 
specified directly using a combined directive:

C:
#pragma acc parallel loop

for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];

}

Fortran:
!$acc parallel loop

do i=1,size

c(i)=a(i)+b(i)  

end do

!$acc end parallel loop
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Independent clause within kernels region

► On a loop construct within a kernels region
• Tells the compiler that loop iterations are independent

(only a hint, for the case compiler cannot proof this independence by itself)

• Compiler still decides about parallelization

C:
#pragma acc kernels
{

#pragma acc loop independent
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

}

Fortran:
!$acc kernels
!$acc loop independent
do i=1,size
c(i)=a(i)+b(i)  

end do
!$acc end loop
!$acc end kernels
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

gang, worker and vector clauses

► On a loop construct it is possible to specify over which 
hardware entities parallelization should happen

• gang = group of workers
#pragma acc loop gang

#pragma acc loop gang(n)

• worker = single ‘thread’, but might contain SIMD vector unit
#pragma acc loop worker

#pragma acc loop worker(n)

• vector clause: do SIMD vectorization of loop
#pragma acc loop vector

#pragma acc loop vector(n)

• In CUDA terms

♦ Gang = GPU / Grid (Group of multiprocessors)

♦ Worker  (Vector?) = Multiprocessor / Block (Group of threads)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

num_gangs, num_workers and vector_length

► On a parallel of kernels construct it is possible 

to specify the ‘execution configuration’ of the called kernel(s)

► Syntax

#pragma parallel num_gangs(n) num_workers(n) \

vector_length(n)

► Note: this is an imported feature for performance tuning, 

as should be clear from CUDA tests

► Note: mapping of these clauses to grid size/block size may be 

implementation-specific
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Data management

► How does data copy from/to device work?

#pragma acc parallel loop
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

• Per default all arrays a[], b[], c[] are copied to device before loop is executed 
and back to host afterwards

♦ Compiler might detect need to copy, 
but at the moment it is rarely the case

► Simple method to configure copy operations: copyin/copyout clauses

#pragma acc parallel copyin(a[0:size],b[0:size]) \
copyout(c[0:size])

{
...

}

► Problem: data is still copied to/from host between parallel/kernels regions
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Data regions

► Code within data region is executed on host
(outside of parallel or kernels regions)

► The specified variables / arrays are copied from/to device
only at begin/end of data region
(even if the data regions contains many parallel/kernel regions) 

► #pragma acc data copyin(a[0:size],b[0:size]) \
copyout(c[0:size])

{
...

}

► ‘copyin’ clause
• Meaning data is copied at start of data region to device

► ‘copyout’ clause
• Meaning data is copied at end of data region to host

► ‘copy’ clause
• Meaning data is copied at start of data region to device 

and at end of data region back to host

CUDA - Course 216



:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Array size specification

► In C with ‘pointer as array’ or Fortran with ‘(*)’-syntax compiler 
does not know array size

► In these cases size specification is required on data clauses

► Syntax
• C:
#pragma acc data copyin(a[0:size],b[0:size]) \

copyout(c[0:size])
{
...

}

♦ Note: it is [begin:size] in C, but (begin:end) in Fortran (!!!)

• Fortran:
!$acc data copyin(a(1:size),b(1:size)) &  

copyout(c(1:size))
...
!$acc end data
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Further data clauses

► ‘create’ clause
• Memory is allocated on device, but no copy is done at all

► ‘present’ clause
• Data is already present on device

► ‘present_or_copyin’, ‘present_or_copy’ clauses
• Framework checks if data is already present on device,

if not it is copied

• ‘present_or_copy’ also copies data back at end of data region

► ‘present_or_create’, ‘present_or_copyout’,
• Framework checks if data is already present on device,

if not it is allocated

• ‘present_or_copyout’ also copies data back at end of data region

► ‘deviceptr’ clause
• array is a pointer to device memory

(created with some other allocation mechanism)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Finer control: update directive

► Variables which are already present on device

(but may have outdated data) can be manually copied 

from/to device

► #pragma acc update host(variable list) 

device(variable list)

• host: variables are copied from device to host

• device: variables are copied from host to device
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Note on variable scoping

► Are variables in device code 

local per thread or globally visible?

► Default behavior:

• Arrays are globally visible

• Variables appearing in a data clause are globally visible

• Variables accessed both inside and outside of a 

parallel/kernels region are globally visible

• Variables accessed only within one parallel/kernels region 

are thread local

► Explicit control: private clause (on parallel, kernels, loop)

• variable is private for each thread (or iteration for loop clause)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Asynchronous execution

► Per default the host is expected at parallel/kernels regions

► Asynchronous execution (‘streams’) is possible, though

► Mechanism
• Add an async clause to parallel of kernels construct
#pragma acc parallel ... async
{

...
}
#pragma acc parallel ... async(n)
{

...
}

• To wait for asynchronous regions the wait directive is used
♦ wait on all asynchronous regions:

#pragma acc wait

♦ Wait only on regions with the same integer index n in the async clause:

#pragma acc wait(n)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Runtime library

► Beside pragmas there is a runtime library containing several 
useful functions

• Include with
C: #include <openacc.h>
Fortran: use openacc

► Functions, e.g.:

• Select between multiple devices: 
acc_set_device_num()

• Test for finished asynchronous regions, without blocking: 
acc_async_test()

• Manual device memory management
(to be used with deviceptr): 
acc_malloc(), acc_free()
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

More features

► Private

► Reduction on loops
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

GPU Programming using CUDA

Exercises 14+15: OpenACC
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 14: Vector operation with OpenACC

► Task:

• Create a GPU version of the vector-scalar multiplication  CPU code 
exercise01_cpu.c/.f90 
by adding the necessary ‘acc’ pragmas

• Check with COMPUTE_PROFILE=1
that the code is actually executed on the GPU. 

• How many memory copies are done?

► Advanced exercise

• Create an ‘acc data’ region around your ‘acc parallel’ region and 
modify the data clauses so that the arrays are copied when 
entering/leaving the data region instead of the parallel region

• Add timers around the ‘acc parallel’ region 
so you can measure the duration of the kernel 
without the duration of the array copies between host and device

• Note: do not forget async/wait (with the Cray compiler)
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Exercise 15: 2D Heat equation with OpenACC

► Task:

• exercise15_template.cl/.f90 contains the CPU version 
of the 2D finite difference heat equation scheme from exercise 12

• Move the computation on the GPU with acc pragmas

• Make sure no data copy from/to host is happening 
between the multiple kernel calls 
(no copy inside the other loop over the time steps i=0,steps)

► Notes:

• You can check if accelerator code is generated 
by using the Cray compiler option ‘–h list=m’ 
and looking at the ‘.lst’ file

• The field data is copied from array a to b, 
then back from b to a in a loop.
Which data clauses do you actually need to save 
as many unnecessary memory copies as possible?
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Timers with Cray Fortran Compiler

► The subroutine cpu_time() of the Cray compiler is not 

suitable for timing GPU code, as it has second resolution

► Instead there is an alternative cpu_time_cray() available

► To use it you have to compile cray_fortran_timer.c

and timer.f90 and link it to your code:

cc –c cray_fortran_timer.c

ftn –c timer.f90

ftn -h pragma=acc <source file> \

cray_fortran_timer.o timer.o \

-o <executable>
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:: ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   ::::: :::::   :::::   :::::   :::::   :::::   :::::   

::

Thank you!

► Thank you for listening!
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