
:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Overview

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Course Overview

CUDA - Course 2

► Basics
• Writing and executing GPU code

• Parallel programming model

• Transfer memory
from/to device (video card)

• Synchronization, error handling, …

► Performance Optimization I
• Optimizing usage of parallelism

in the hardware of the GPU

• Single Instruction Multiple Thread (SIMT)

• Optimization of bandwidth
of device memory (global memory)

• Transfer of data host↔device

• Instruction throughput

► Shared Memory
• What is shared memory?

• Syntax & applications

• Reductions

• Exercise: scalar product

► Atomic Operations
• What are atomic operations?

• Syntax & applications

• Exercises: reduction, particle sort

► Performance Optimization II
• Optimizing shared memory accesses

• CUDA-GDB

• Visual Profiler

• Kepler architecture

• Exercise: matrix-matrix multiplications

► Advanced Features
• Texture Memory & Constant Memory

• Streams

• Using multiple GPUs

• Zero-copy host memory access

• IEEE

• Exercise: using multiple GPUs

► Numerical Libraries
• CUBLAS, CUSPARSE, CUFFT,

CURAND

► OpenACC
• Alternatives to CUDA

• Introduction to accelerator
programming with OpenACC

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

► This course and its slides have been developed by

Oliver Mangold

and is now continued by

Thomas Baumann and Mhd. Amer Wafai

CUDA Course 3

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Basics

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Some Terms
► Host

• The PC system containing the video card

• Refers typically to CPU + memory on the main board
♦ Host program, host memory, etc.

► Device
• Video/accelerator card

• Consists of GPU + memory on the video board

► Global memory/Device memory
• Memory on the video board

• Off-chip from the GPU

• Not(!) host memory (on the main board)

► Multiprocessor
• A ‘core’ (computing element with it’s own program flow) of the GPU

• Multi: operates on multiple data at the same time
♦ SIMT: single instruction multiple thread (similar to SIMD, details later)

► Compute Capability
• Hardware ‘Version’ of the Graphics Processor

♦ The Tesla C2050 (Fermi architecture) has compute capability 2.0

♦ The GTX 680 (Kepler architecture) has compute capability 3.0

♦ The K20x (Kepler Architecture) has compute capability 3.5

♦ See PG Appendix G for CC features, see Appendix A for CC of newer video cards

CUDA - Course 5

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUDA programs

► A CUDA program is usually organized into

• A host program

♦ Controls overall program flow

♦ Manages memory transfers from/to GPU

• One or multiple kernels running on the GPU

♦ Contains the fast parallel computation code

► ‘Accelerator’ programming model

• CPU = master

• GPU = slave

• CPU and GPU can work independently but CPU has control

♦ Parallelism between CPU and GPU:
synchronization is necessary → discussed later

CUDA - Course 6

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Creating GPU code (C)

► Kernels:
• A C function can be declared to be device code callable from host

by adding the __global__ declaration specifier:

__global__ void VectorSum(float* inputA,
float* inputB, float* output, int size);

• Such functions are called CUDA kernels

• Remark: kernels have to return void

► Device functions:
• A C function is declared to be device code callable from device by adding

the __device__ declaration specifier:

__device__ float Max(float x, float y);

• Remark: device functions cannot be recursive for devices of compute capability < 2.0

► Other functions:
• Functions without these declarations are compiled as host code

CUDA - Course 7

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Creating GPU code (Fortran)

► Kernels:
• A subroutine can be declared to be device code callable from host

by adding the global attribute:

attributes(global) subroutine VectorSum(a,b,output,size)

• Such functions are called CUDA kernels

• Remark: kernels cannot have dummy arguments with modifiers intent(out) and value

► Device subroutines / functions:
• A C function is declared to be device code callable from device by adding

the __device__ declaration specifier:

attributes(device) real function Max(x,y)

• Remark: device subroutines/functions cannot be recursive
for devices of compute capability < 2.0

► Other functions:
• Functions without these declarations are compiled as host code

CUDA - Course 8

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Calling CUDA kernels

► Kernels can be called from host code as any other function

• But require execution configuration <<< >>> specification

► Remarks:
• Kernel invocations are asynchronous,

function call returns immediately, before execution on device is finished

• cudaDeviceSynchronize() can be used to wait for running kernels

► Example (C):

int main() {
…
VectorSum<<<gridSize, blockSize>>>(inputA, inputB,

output, size);
cudaDeviceSynchronize();
…
return 0;

}

CUDA - Course 9

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Calling CUDA kernels

► Example (Fortran):

program example

…

call VectorSum<<<gridSize, blockSize>>>(inputA, inputB,

output, size)

error = cudaDeviceSynchronize()

…

end program example

CUDA - Course 10

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Hardware: Kepler Architecture (K20X)

CUDA - Course 11

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

SM
X

1.5 MB

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Kernel execution configuration

CUDA - Course 12

► Meaning of execution
configuration:

<<<gridSize, blockSize>>>

• Block of logical threads
♦ Are executed together (SIMT)

♦ are distributed to different
scalar processors within the
same MP

• Grid of blocks
♦ Are executed independently

in serial or parallel

♦ are distributed to different
multiprocessors

► On kernel invocation
(‘function call’):
• All threads in all blocks execute

the same function in parallel

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Threads & Blocks

► Advanced execution configuration syntax

dim3 blockSize(16,8,4); // total number of threads
// per block = 512

dim3 gridSize(64,32); // total number of blocks = 2048

MyKernel<<<gridSize, blockSize>>>();
…

• Threads and Blocks may be organized 1-, 2-, 3-dimensional

• Unspecified components of dim3 are initialized to 1
(overloaded C++ constructor)

► Get thread/block information from kernel code:

• threadIdx.x (threadIdx.y, threadIdx.z) → index of this thread within block

• blockDim.x (blockDim.y, blockDim.z) → number of threads per block

• blockIdx.x (blockIdx.y, blockIdx.z) → index of block of this tread

• gridDim.x (gridDim.y, gridDim.z) → number of blocks in grid

CUDA - Course 13

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Threads & Blocks (Fortran)

► Advanced execution configuration syntax

type(dim3) :: blockSize = dim3(16,8,4) // total number of threads
// per block = 512

type(dim3) :: gridSize = dim3(64,32,1) // total number of blocks = 2048

call MyKernel<<<gridSize, blockSize>>>()
…

• Threads or blocks may be organized 1-, 2-, 3-dimensional

• All components of dim3 have to be specified (set unused components to 1)

► Get thread/block information from kernel code:

• threadIdx%x (threadIdx%y, threadIdx%z) → index of this thread within block

• blockDim%x (blockDim%y, blockDim%z) → number of threads per block

• blockIdx%x (blockIdx%y, blockIdx%z) → index of block of this tread

• gridDim%x (gridDim%y, gridDim%z) → number of blocks in grid

• Note: all indices start counting from 1 in Fortran but from 0 in C (!)

CUDA - Course 14

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Limits

► The following limitations apply
for the execution configuration

• CC≥2.0: Maximum number of threads per block is 1024
blockDim.x * blockDim.y * blockDim.z ≤ 1024

• CC<2.0: Maximum number of threads per block is 512

• Maximum number of threads in z-direction is 64
blockDim.z≤64

• Maximum number of blocks per dimension is

♦ CC<3.0: 65535 in all directions
gridDim.x≤65535, gridDim.y≤65535, gridDim.z≤65535

♦ CC≥3.0: 2147483647 in x-direction, 65535 in y,z-directions
gridDim.x≤2147483647, gridDim.y≤65535, gridDim.z≤65535

♦ But overall number of blocks can be large

CUDA - Course 15

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: add 2 vectors with one block

► If vector size = block size:

__global__ void VectorSum(float* inputA, float* inputB,

float* output) {

output[threadIdx.x] = inputA[threadIdx.x] +

inputB[threadIdx.x];

}

CUDA - Course 16

Thread 0

Element 0

Thread 1

Element 1

Thread 2

Element 2

Thread 3

Element 3

…

…

Thread 4

Element 4

Each thread processes exactly one array element in total

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: add 2 vectors with one block

► If vector size ≠ block size:

__global__ void VectorSum(float* inputA, float* inputB,

float* output, int size) {

for(int i=threadIdx.x; i<size; i+=blockDim.x) {

output[i] = inputA[i] + inputB[i];

}

}

CUDA - Course 17

Thread 0

Element 0

Thread 1

Element 1

Thread 2

Element 2

Thread 3

Element 3

…

…

Thread 0

Element 4

Each thread processes one array element per for loop iteration
The elements are processed in ‘round robin’ fashion

Total number of threads = 4

Thread 1

Element 5

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: add 2 vectors with many blocks

► If vector size = block size * grid size:

__global__ void VectorSum(float* inputA, float* inputB,

float* output) {

// local variables are local to thread

int myIndex = blockIdx.x*blockDim.x + threadIdx.x;

output[myIndex] = inputA[myIndex] + inputB[myIndex];

}

CUDA - Course 18

Thread 0

Element 0

Thread 1

Element 1

Thread 2

Element 2

Thread 3

Element 3

…

…

Thread 4

Element 4

Each thread in each block processes exactly one array element in total

Block 0
Thread 0

Element 0

Block 0
Thread 1

Element 1

Block 1
Thread 0

Element 2

Block 1
Thread 1

Element 3

…

…

Block 2
Thread 0

Element 4

number of threads per block = 2

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: add 2 vectors with many blocks

► If vector size ≠ block size * grid size:

__global__ void VectorSum(float* inputA, float* inputB,

float* output, int size) {

for(int i = blockIdx.x*blockDim.x + threadIdx.x;

i<size; i+=blockDim.x*gridDim.x) {

output[i] = inputA[i] + inputB[i];

}

}

CUDA - Course 19

Block 0
Thread 0

Element 0

Block 0
Thread 1

Element 1

Block 1
Thread 0

Element 2

Block 1
Thread 1

Element 3

…

…

Block 0
Thread 0

Element 4

Each thread in each block processes one array element per for loop iteration
The elements are processed in ‘round robin’ fashion

Total number of blocks = 2
Number of threads per block = 2

Block 0
Thread 1

Element 5

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Variable declarations and memory

► Variables declared outside of device functions
reside on the host as usual

► Variables declared __device__ (Fortran: device) in global scope
(outside of functions) reside in global device memory
and are accessible from all threads of all blocks of all kernels

► Variables declared normally inside device functions
reside in GPU registers or global device memory

• these are local per thread

► Variables declared __constant__ (Fortran: constant)
in global scope reside in constant memory
and are readable from all threads of all blocks of all kernels

• Constant memory is discussed later

► Variables declared __shared__ (Fortran: shared) inside device functions
reside in shared memory and are local per block

• Shared memory is discussed later

CUDA - Course 20

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Allocate and copy device memory (C)
► Allocate device memory:

cudaError_t cudaMalloc(void** pointer, size_t size);

► Free device memory:
cudaError_t cudaFree(void* pointer);

► Copy memory:
cudaError_t cudaMemcpy(void* dst, const void* src, size_t count,

enum cudaMemcpyKind kind);

kind may be

• cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice

• cudaMemcpyDefault (with unified address space only)

► Allocate and free page-locked host memory:
cudaError_t cudaMallocHost(void** pointer, size_t size);
cudaError_t cudaFreeHost(void* pointer);

► Why?
• Faster copy from/to device:

non-page-locked host memory will be buffered in PL memory during memcpy (!)

• Access from device is possible

• Asynchronous copy is possible

CUDA - Course 21

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Allocate and copy device memory (Fortran)
► Allocate device memory (static):

real, dimension(0:size-1), device :: data

► Allocate device memory (dynamic):
real, allocatable, dimension(:), device :: data
allocate(data(0:size-1))
…
deallocate(data)

► Copy memory:
simply use (array) assignment (works in all directions, except subarray copy from device to device):
data_device = data_host
data_host = data_device

• Note: device single array element accesses (xxx=data_device(0)),
array initialization (data_device=0), and a few other operations work as well

• Note: on subarray copy sometimes complete array is copied (compiler bug)

► Allocate page-locked host memory:

real, allocatable, dimension(:), pinned :: data
allocate(data(0:size-1))
…
deallocate(data)

• Note: this works only with allocatable arrays (!)

CUDA - Course 22

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Pointers (C)

► Within host code:
only pointers to host memory can be dereferenced.

► Within device code:
• Since CUDA 4.0 unified address space:

both host and device pointers can be dereferenced

• Note: only memory regions allocated with cudaMallocHost()
(or other CUDA functions) can be accessed from the device!

• Conclusion: pointers passed to kernels as arguments
must point to global memory (or unified address space)

► Note:
• Pointers in device code may also point

to shared memory or constant memory

► Fortran: compiler checks for most dereferencing errors
• Note: unified address space not usable directly

(compiler forbids passing pinned variables to kernel)

CUDA - Course 23

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Passing arguments to kernels

► With CUDA 4.0 and CC 2.0 pointers and arrays (C) passed to kernels
are assumed to lie in the unified address space
of device memory and page-locked host memory

► Arrays (Fortran) passed to kernels
are assumed to be stored in global device memory (declared device)

► Scalars like int, float, …, struct (C),
integer, real, type (Fortran)
• are passed by value to the kernel (C)

• are passed by value to the kernel if declared value,
or assumed to be passed device variables otherwise (Fortran)

► Note: no device memory allocation and copy is necessary
to pass scalars to kernels by value

► Note: in Fortran kernel arguments may not be declared value
and intent(out) or intent(inout) at the same time

► Note: passed by value kernel arguments
are stored in shared memory (shared memory is discussed later)

CUDA - Course 24

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Synchronization

► How can the execution of the threads and blocks be synchronized?
• The device function (Fortran: subroutine)

__syncthreads() (Fortran: call syncthreads())

synchronizes all threads within the same block
♦ Note all threads of the block need to reach the same __syncthreads() call

or a deadlock happens

• The host function (Fortran: subroutine)

cudaDeviceSynchronize() (error=cudadevicesynchronize())

blocks the host execution until all GPU kernels and other operations are finished

• Implicit barriers
♦ Multiple kernel executions never overlap for devices of compute capability <2.0

– Up to 32 (Fermi: 16) kernels can be executed simultaneously (depending on resource usage)

♦ cudaMemcpy (Host → Device, Device → Host, Device → Device)
does not overlap with kernel execution

– But cudaMemcpy (Host → Host) does (!)

– And cudaMemcpyAsync does also

♦ cudaMemcpy blocks the host thread until the transfer is finished

CUDA - Course 25

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Error handling

► The function

cudaError_t cudaGetLastError();
(Fortran: integer function cudaGetLastError())

returns the last error from a CUDA API call or kernel execution

► The function

char* cudaGetErrorString(cudaError_t error);
(Fortran: character(len=*) function cudaGetErrorString(error))

returns the error in printable form

► Most cuda functions return a cudaError_t directly

• e.g. cudaMemcpy(), cudaDeviceSynchronize()

► If no error happened the returned value is cudaSuccess

► Note on errors during kernel execution:
As kernel call is asynchronous, a cudaGetLastError() directly afterwards
does not show error → next CUDA API call reports the error
• Typically reported error: “unspecified launch failure”, translation: kernel program crashed

Common reason: invalid access to memory (array bounds violation, etc.)

CUDA - Course 26

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Simplified error handling (C)

► The file “cuda_utils.h” provides a simpler interface to do error
checking of cuda calls

► The macro cudaVerify(x) assumes expression x returns
an cudaError_t.
If the result is an error it prints the error string
and aborts the program.

• Appropriate for most CUDA library calls

► The macro cudaVerifyKernel(x) executes statement x
and calls cudaGetLastError() afterwards.
If the result is an error it prints the error string and aborts the program

• Appropriate for kernel calls

• Note: surround kernel calls with double ‘(‘ ‘)‘ parentheses.
Otherwise the preprocessor gets confused
cudaVerifyKernel((myKernel<<<…>>>(…)))

CUDA - Course 27

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example host program (C)

CUDA - Course 28

int main() {

int vectorSize = 10000000;

int memorySize = sizeof(float)*vectorSize;

float *vectorHostA;

float *vectorHostB;

float* vectorHostResult;

cudaMallocHost((void**)&vectorHostA,
memorySize);

cudaMallocHost((void**)&vectorHostB,
memorySize);

cudaMallocHost((void**)&vectorHostResult,
memorySize);

... initialize vectors A,B ...

float* vectorDeviceA;

float* vectorDeviceB;

float* vectorDeviceResult;

cudaMalloc((void**)&vectorDeviceA,

memorySize);

cudaMalloc((void**)&vectorDeviceB,
memorySize);

cudaMalloc((void**)&vectorDeviceResult,
memorySize);

cudaMemcpy(vectorDeviceA, vectorHostA,
memorySize, cudaMemcpyHostToDevice);

cudaMemcpy(vectorDeviceB, vectorHostB,
memorySize, cudaMemcpyHostToDevice);

VectorSum<<<gridSize, blockSize>>>

(vectorDeviceA, vectorDeviceB,

vectorDeviceResult, vectorSize);

cudaMemcpy(vectorHostResult,
vectorDeviceResult,

memorySize, cudaMemcpyDeviceToHost);

... print result ...

cudaFree(vectorDeviceA);

cudaFree(vectorDeviceB);

cudaFree(vectorDeviceResult);

cudaFreeHost(vectorHostA);

cudaFreeHost(vectorHostB);

cudaFreeHost(vectorHostResult);

return 0;

}

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example host program (Fortran)
program demo

use device_code

implicit none

integer,parameter :: vectorSize = 10000000

real,dimension(0:vectorSize-1) :: vectorHostA

real,dimension(0:vectorSize-1) :: vectorHostB

real,dimension(0:vectorSize-1) :: vectorHostResult

real,dimension(0:vectorSize-1),device :: vectorDeviceA

real,dimension(0:vectorSize-1),device :: vectorDeviceB

real,dimension(0:vectorSize-1),device :: vectorDeviceResult

... initialize vectors A,B ...

vectorDeviceA = vectorHostA

vectorDeviceB = vectorHostB

call VectorSum<<<gridSize, blockSize>>>(vectorDeviceA, vectorDeviceB, &

vectorDeviceResult, vectorSize)

vectorHostResult = vectorDeviceResult

... print result ...

end program demo

CUDA - Course 29

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example device program (C)

► __global__ void VectorSum(float* inputA,

float* inputB, float* output, int size) {

for(int i = blockIdx.x*blockDim.x + threadIdx.x;

i<size; i+=blockDim.x*gridDim.x) {

output[i] = inputA[i] + inputB[i];

}

}

CUDA - Course 30

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example device program (Fortran)

► module device_code

contains

attributes(global) subroutine &

VectorSum(inputA, inputB, output, size)

implicit none

real, dimension(0:size-1) :: inputA,inputB,output

integer, value :: size

integer :: i

do i=(blockIdx%x-1)*blockDim%x + threadIdx%x-1, &

size, blockDim%x*gridDim%x

output(i) = inputA(i) + inputB(i)

end do

end subroutine VectorSum

end module device_code

CUDA - Course 31

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

What can be used inside kernels

► What can be used

• All mathematical operators

• Control flow constructs (if, for, while, case, goto)

• Transcendent mathematical functions
for single precision floating point
(see Table D-1 in PG)

• Calls to device functions/subroutines

• Pointers (C)

• Structs (C) and statically-sized arrays (C, Fortran)

• Assumed-shape arrays as kernel arguments (Fortran)

• CUDA-specific built-in functions

• C++ templates

• C++ function overloading

CUDA - Course 32

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

What can not be used inside kernels

► What can be used only on newer devices
• Double precision floats and DP mathematical functions

(compute capability ≥ 1.3)

• Recursive function calls (C) (compute capability ≥ 2.0)

• Function pointers (compute capability ≥ 2.0, CUDA ≥ 3.1)

• C++ non-polymorphic classes (no virtual functions) (compute c. ≥ 2.0)

• printf (compute capability ≥ 2.0, CUDA ≥ 3.1) (Fortran: print available, but buggy)

• malloc, new (compute capability ≥ 2.0, CUDA ≥ 3.2) (no Fortran equivalent, yet)

• C++ polymorphic classes (compute capability ≥ 2.0, CUDA ≥ 4.0)

► What can not be used at the moment inside device code
• C99/C++ dynamically-sized ‘[]’-arrays

• System calls, I/O, memory management
♦ fopen, fprintf, system, ...

• Long double floats

• Allocatable arrays, pointers, value with intent(out) or intent(inout) (Fortran)

• Recursive, pure, elemental function calls, optional function arguments (Fortran)

• Save attribute (Fortran), static variables declared in device functions

CUDA - Course 33

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::CUDA - Course

GPU Programming using CUDA

Exercises 1+2: Vector-scalar-multiplication

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 1: serial function evaluations on GPU (C)

► Vector-scalar multiplication
• CPU code (exercise01_cpu.c):

const int size = 10000;
float a[size];
const float b;
float c[size];
…
for(int i=0;i<size;i++) {
c[i]=a[i]*b;

}

• The computation should be done on the GPU
but use only one thread and only one block

► Sketch:
• Allocate an array on the device with cudaMalloc(),

Allocate an array on the host with cudaMallocHost()

• Use cudaMemcpy to copy the input vector to the GPU

• Call kernel with gridSize = 1 and blockSize = 1
♦ The kernel takes the address of the device memory as argument

• Use cudaMemcpy to copy the results back to the host

CUDA - Course 35

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 1: serial function evaluations on GPU (Fortran)

► Vector-scalar multiplication
• CPU code (exercise01_cpu.f90):

subroutine eval(a,b,c,size)
implicit none
real, dimension(0:size-1) :: a,c
real, value :: b
integer, value :: size,I
do i = 0, size-1

c(i)=a(i)*b;
end do

end subroutine eval

• The computation should be done on the GPU
but use only one thread and only one block

► Sketch:
• Allocate an array on the device using the device modifier,

Use an array assignment to copy the input vector to the GPU

• Call kernel with gridSize = 1 and blockSize = 1
♦ The kernel takes the array on the device memory as argument

• Use an array assignment to copy the results back to the host

CUDA - Course 36

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 2: parallel function evaluations on GPU

► Modify your solution of exercise 1
to use many threads in many blocks which do the work in parallel

► Hint:

• Use threadIdx.x, blockDim.x,
blockIdx.x and gridDim.x to decide for each thread
which array elements it has to process

► Advanced exercise:
• Can you modify your code in way

that it does not use a for loop inside the kernel
but uses a large number of blocks
(depending on the vector size) instead?

CUDA - Course 37

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Performance Optimization I

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU architecture

CUDA - Course 39

► Two-Stage parallelism

• A GPU contains multiple
Multiprocessors (SMX)
(Kepler: 13 -15)

• Each Multiprocessor (SMX)
contains multiple
scalar processors (Cores)
(Kepler: 192)

► Programming of GPUs:

• Work has to be distributed

♦ To different
multiprocessors

♦ To different
scalar processors
within one multiprocessor

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Hardware: Kepler architecture

CUDA - Course 40

Multiprocessor

Register Register Register

Texture cache (8 kB)

Constant cache (8 kB)

…

Instruction

unit /

warp

scheduler

Shared memory L1 cache (64 kB)

Instruction cache

Scalar

processor
Scalar

processor

Scalar

processor

L2 cache (1.5 MB)

Global memory

…

L2 cache

GPU

Set of
multi-

processors

Global memory
PCIe 3.0

to host

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Warps

► SIMT execution

• Single instruction multiple thread

• Each group of 32 threads within the same block
execute the same instruction at the same time

• Those groups of threads are called warps

• Note: some operations are per half-warp,
this is either the first or second 16 threads of a warp

• How are warps mapped to multidimensional blocks?

♦ 3D-thread index is mapped to linear index,
where threadIdx.x is fastest index

♦ Example: blockDim=dim3(16,6,1)

– 96 threads will result in 3 warps

» warp 0: 0≤threadIdx.x ≤15, 0≤threadIdx.y ≤1

» warp 1: 0≤threadIdx.x ≤15, 2≤threadIdx.y ≤3

» warp 2: 0≤threadIdx.x ≤15, 4≤threadIdx.y ≤5

CUDA - Course 41

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

SIMT execution

► What happens when control flows diverge?

if (threadIdx.x > 0) {

output[threadIdx.x] = input[threadIdx.x] +

input[threadIdx.x-1];

} else {

output[threadIdx.x] = input[threadIdx.x] + 1;

}

• Answer: it works, but branches are executed in serial

• It is handled efficiently: only branches which are taken

by at least one thread are executed

CUDA - Course 42

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on SIMT execution

► How many threads per block should one use?

• As threads are organized in groups of 32 threads (warps)

which execute together

♦ A block of 3 threads needs the same execution time

as a block of 32 threads (when working on GPU registers)

♦ Ideally the number of threads is a multiple of 32

• Maximum number of threads per block is 1024

• Number of registers per multiprocessor is limited

(Kepler: 65536)

♦ Registers per thread * threads per block ≤ registers per MP

CUDA - Course 43

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Memory model
► There are several different kinds of memory

• Host memory: can only be accessed via PCIe bus (slow)

• Global memory: main memory of the video board (Tesla K20x: 6 GiB),
can be accessed from all multiprocessors

♦ High bandwidth (> 100 GB/s)

♦ High latency (several 100 cycles)

♦ CC ≥ 2.0 : (16 or 48 kiB) L1 cache/shared memory per MP

♦ CC ≥ 2.0 : shared L2 cache

• GPU registers: used for data local to one thread
♦ Can be accessed within 1 cycle

• Local memory: physically resides global memory
but is used for data local to one thread

• Shared, constant, texture memory: discussed later

► Notes:
• Local variables of a kernel function reside in GPU registers

(if not declared otherwise)
♦ Are local to each thread

♦ If no more registers are available local variables are stored in local memory

• Kernel function arguments reside in shared memory on devices with CC<2.0
and in constant memory otherwise(→ accessing kernel arguments is very fast)

CUDA - Course 44

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Kernel dummy parameters (Fortran)

► In C kernel scalar arguments are passed by value,
and pointers point to global memory

► In Fortran scalar arguments are by default stored in global memory
• To reproduce the C behavior of passing scalar arguments

by value in shared memory the ‘value’ modifier must be used:
attribute(global) subroutine my_kernel(my_param)

real, value :: my_param
…

► Note: ‘value’ parameters are stored in shared memory
(discussed later) which is faster than global memory

► Array descriptors are usually passed in global memory.
This means using operators like size(), shape(), …,
results in global memory accesses (slow!)
• use sparingly or pass size information by value separately

• Note: storing of array descriptors to global memory (extra memcpy)
can be avoided by specifying sizes for dummy parameters
(dimension(0:size-1) instead of dimension(:))

CUDA - Course 45

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on block size and grid size

► How many blocks per grid should one use?

• To use all multiprocessors,

number of blocks ≥ number of multiprocessors

► As accesses to global memory have long latency,

to get full memory bandwidth, latency hiding

is necessary(!)

• If the number of blocks is larger than the number of

multiprocessors, block execution will be overlapped

(multitasking)

► Equivalently for threads:

if the number of threads is larger than the warp size (32)

warp execution will be overlapped/multitasked

CUDA - Course 46

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Latency hiding

► How does latency hiding work?

► Each multiprocessor can switch/‘multitask’ between
several warps – even of different blocks

► If a thread/warp requests global memory
it has to wait a very quite long (500-600 cycles!)

► During this time the multiprocessor
executes code of a different warp

CUDA - Course 47

time

waiting for memory

warp requests data data arrives

waiting for memory

waiting for memory

computing

computing

computing

computing

computing

computing

waiting for memory

waiting for …

warp 0

warp 1

warp 2

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on latency hiding / multitasking

► The maximum number of warps than can be operated on

at the same time by one multiprocessor is

• 48 for Fermi architecture

• 64 for Kepler architecture

► The maximum number of blocks than can be operated on

at the same time by one multiprocessor is

• 8 for Fermi architecture

• 16 for Kepler architecture

► Conclusion: block sizes larger than 32

may be advantageous for latency hiding

CUDA - Course 48

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Register usage

► Important note: warp switching/multitasking
will only happen as far as the available number registers and the
vailable shared memory in the multiprocessor is enough for multiple
warps/blocks
• Each multiprocessor has only a limited number of registers (!)

♦ Kepler: 65536, Fermi: 32768, register size is 32 bits

► How do I find out how many registers per thread
my kernel uses?
• CUDA profiler or
• --ptxas-options –v or -Xptxas –v

• See the difference if you compile with -arch=sm_(35, 20,
13, 10)

► Can I limit the number of registers to use?
• Yes: using __launch_bounds__(maxThreadsPerBlock,minBlocksPerMP)

on kernel definition

• or using ‘--maxrregcount <N>’ on compilation
• Lower bound is 16 reg/thread

CUDA - Course 49

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Global memory accesses and caching

► Cache lines

• Data is transferred to/from L1/L2 cache in blocks of 128 bytes

• 128 consecutive bytes in global memory belong to the same cache
line

► Note: caches are small:
with 1024 concurrent threads per multiprocessor, around one
third cache line/thread (!)

• If each thread in the device accesses a different cache line
in the same cycle, caching is useless!

CUDA - Course 50

…

cache line sizephysical
global
memory

cache …
transferred as one block

from/to cache

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Coalesced accesses

► Coalesced accesses:
• Combining global memory access improves performance

• If multiple threads of a warp access the same cache line (128 bytes)
the accesses are combined into one transfer

► Note: number of transferred cache lines per cycle is limited
→ it is slower to access multiple different cache lines
at the same time from the same warp (!)

► Note: Kepler always transfers 128 byte blocks from/to memory/cache,
regardless how much data of the block is needed

► Older hardware (T10):
• pre-Fermi cards do not have L1/L2 cache

→ coalescing more important, as unneeded data is always wasted

• T10 transfers 32-byte, 64-byte or 128-byte aligned blocks,
as best suited (can be advantage over Fermi)

• memory accesses are per half-warp
(not per warp), so only first/second 16 threads combine transfers

CUDA - Course 51

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Coalesced vs. uncoalesced access patterns

CUDA - Course 52

► Coalesced accesses:

► Uncoalesced accesses:

Addr

128

Addr

132

Addr

136

Addr

252…

Thread

0
Thread

1
Thread

2
Thread

31…

Addr

124

Addr

256

Addr

128

Addr

132

Addr

136

Addr

252…

Thread

0
Thread

1
Thread

2
Thread

31…

Addr

124

Addr

256

Addr

128

Addr

132

Addr

136

Addr

252…

Thread

0
Thread

1
Thread

2
Thread

31…

Addr

124

Addr

256

continuous, unaligned: 2 memory transactions

Addr

256

Addr

512

Addr

640

Addr

4224…

Thread

0
Thread

1
Thread

2
Thread

31…

Addr

128

strided (128 bytes): 32 memory transactions

continuous, aligned: 1 memory transaction permutated within CL: 1 memory transaction

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Global memory writes on Fermi and Kepler

► Note on Fermi/Kepler and coalesced write accesses:
• Cache architecture requires that after each write

a cache line needs to be in a consistent state

• When doing a partial write on a cache line
in case its data contents were not present in cache before,
the data has to be read from memory before the write can be done!

• This is not the case if the cache line is written completely
with one coalesced access

• Effect: it is usually faster to write all data elements of a cache line with a
coalesced access, instead of

♦ writing only some elements

♦ writing the elements sequentially

• Example:

index = threadIdx.x+blockIdx.x*blockDim.x;
if ((threadIdx.x&31)!=0) {

output[index] = inputA[index] + inputB[index];
}

is slower than the version without the if clause!

CUDA - Course 53

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUDA kernel startup time

► How long does it take to start a kernel from the host?
• Answer: about 3.2μs + 4.8ns*(grid size)

(our measurement on our Tesla K20X, Fermi is at about 2.5-3µs)

CUDA - Course 54

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on kernel startup time

► Conclusion:

Overhead per block is only a few cycles

→ It is okay to use a large number of blocks

instead of programming loops

• This should be the preferred solution

to allow for more latency hiding

CUDA - Course 55

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Memory transfers host ↔ device

► How long does it take to transfer memory

from/to the device?

• Answer: about 3.3 μs+(data size)/(6GB/s)

for page-locked host memory

(our measurement on our Tesla C1060s)

► Conclusion: keep data as long as possible on the device(!)

CUDA - Course 56

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PCIe memory transfer speed

CUDA - Course 57

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PCIe memory transfer speed

CUDA - Course 58

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Is GPU always faster?

► First estimation:

• The Time, the code needs to execute on CPU: tcpu

• The amount of data which needs to be copied to/from GPU: d

• The Time needed for data copy: tcopy= d / (PCIe speed)

• If tcopy > tcpu CPU execution will be faster(!)

CUDA Course 59

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Note on memory transfers host ↔ device

► Advanced feature: overlapping data transfer

with computation

• The function

cudaError_t cudaMemcpyAsync(void* dst, const void* src,

size_t count, enum cudaMemcpyKind kind,

cudaStream_t stream);

can be used to overlap transfers

with CPU and/or GPU computations

• Note: the usage of streams is required for this:

Streams are discussed later

CUDA - Course 60

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on GPU Computation

► Problem size:

• high memory latency and device parallelism

→ CPU faster for small problem size

► Non-parallelizable code parts

• computation on CPU → PCIe data transfer costly

• computation on GPU → single thread performance

might be 100 times slower than CPU

♦ stream addition: Nehalem: 9.2 GB/s, Fermi C2050: 72 MB/s

♦ logistic map iteration:

Nehalem: 740 MFLOPS, Fermi C2050: 43 MFLOPS

CUDA - Course 61

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Performance: FDTD 2D heat equation

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

P
e
rf

o
rm

a
n
c
e
 /
 F

L
O

P
S

Array size / elements

2D Heat equation performance (single precision)

Nehalem single-core @2.8 GHz

Nehalem 2 x 4 cores @2.8 GHz

Tesla C1060, CUDA using texture cache

Tesla C2050, CUDA using L1/L2 cache

CUDA - Course 62

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Performance: FDTD 2D heat equation

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

P
e
rf

o
rm

a
n
c
e
 /
 F

L
O

P
S

Array size / elements

2D Heat equation performance (single precision)

Nehalem single-core @2.8 GHz

Nehalem 2 x 4 cores @2.8 GHz

Tesla C1060, CUDA using texture cache

Tesla C2050, CUDA using L1/L2 cache

CUDA - Course 63

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Double precision floating point numbers

► Double additions and multiplications
are slower by a factor of 8 on consumer Fermi cards
(GTX 4xx/5xx), a factor of 24 on consumer Kepler cards
(GTX 6xx), a factor of 2 on HPC Fermi cards (Tesla 20xx) and a
factor of 3 on HPC Kepler cards (Tesla K20x)

► Note: in many cases a factor 8 does not matter, when speed is
limited by memory bandwidth (but a factor 24 usually does!)

► Note: to use doubles a device of
compute capability ≥ 1.3 is required.
This means ‘-arch=compute_13’, ‘-arch=compute_20’ or , ‘-
arch=compute_3?’ on compilation is required

► Note: be careful with floating point constants:
in C/C++ constants without suffix ‘1.45’ are doubles.
Use the ‘f’ suffix if you wish your computation
to be done in single precision: ‘1.45f’

CUDA - Course 64

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Instruction throughput

► A multiprocessor can execute the following number
of the given type of operation per cycle (Tesla K20x)

► Single precision float operations
• add or multiply or multiply-add (192)

• 1/x (32)

• 1/sqrtf(x) (32)

• __sinf(x), __cosf(x), __log2f(x), exp2f(x) (32)

• sinf(x), cosf(x) (depends on argument, but slow)
♦ Note: transcendental function throughput is still high compared to CPU

C2050: 14G sinf operations/s, 64G __sinf operations/s
Nehalem @2.8 GHz, 2x4 cores: 880M sinf operations/s

• __fdividef(x,y) (faster than x/y)

• atomic operation, L2, cache, no conflict (24)

► Double precision float operations
• add or multiply or multiply-add (64)

• sin(x), cos(x), exp(x) (faster than half speed of SP versions)

► 32-bit integer operations
• add, &, |, compare (160)

• shift (64)

• multiply, multiply-add (32)

► __syncthreads() (128)

CUDA - Course 65

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Pipelining and data dependencies

► GPU can start executing a new instruction of the same thread before the last
one is finished

► This can only work if there are no data dependencies(!)

► Compare the following two code fragments
1) float value1;

…
for(int j=0;j<iterations;j++) {
value1=4.f*value1*(1.f-value1);
value1=4.f*value1*(1.f-value1); // requires previous result

}

2) float value1;
float value2;
…
for(int j=0;j<iterations;j++) {
value1=4.f*value1*(1.f-value1);
value2=4.f*value2*(1.f-value2); // no data dependency

}

► One finds that the second one runs considerably faster. Why?
Because the 2 statements in the loop can be executed independently of each other.
The processor does not have to wait for the results of the first statement

CUDA - Course 66

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Summary on performance

► Use all scalar processors and all multiprocessors busy

► Avoid divergences in control flow

of threads within the same warp

► Use many blocks but few registers and little shared memory

for latency hiding

► Use coalesced accesses to global memory

(or at least avoid accessing too many cache lines

at the same time)

► Keep data on device as long as possible

► Use single precision floats

► Use fast __ mathematical operations when possible

CUDA - Course 67

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercises 3-5: Coalesced accesses

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 3: Vector addition

► Compile the vector addition example below and measure the
performance for different block/grid sizes

► Which is the optimal execution configuration?

► For which range of block/grid sizes
do you get good performance and memory BW?
• Note: you should see at least 70 GB/s on T10, 80 GB/s on Fermi

and ~150 GB/s on K20x

► Kernel code (exercise03_template.cu):

__global__ void VectorSum(float* inputA,
float* inputB, float* output) {

for(int i = blockIdx.x*blockDim.x + threadIdx.x;
i<size; i+=blockDim.x*gridDim.x) {

output[i] = inputA[i] + inputB[i];
}

}

CUDA - Course 69

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Timers (C)

► How to measure performance?

► The file “cuda_utils.h” provides a simple interface
to the POSIX high resolution timers

► Usage:

Timer timer;
initTimer(&timer);
… code to measure …
double duration=getTimer(&timer);

► Add the linker option -lrt to the nvcc command line
when compiling your program to link the POSIX real time library

► Performance (FLOPS) is (vector size)/duration for the vector addition
kernel, as one float operation per vector component is needed

► Note: Remember that kernel invocations are asynchronous (!).
A cudaDeviceSynchronize() call is needed before getTimer()

CUDA - Course 70

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Timers (Fortran)

► How to measure performance?

► Fortran provides the built-in subroutine

call cpu_time(time)

which returns a real-value timestamp in seconds

► Performance (FLOPS) is (vector size)/duration for the vector
addition kernel, as one float operation per vector component is
needed

► Note: Remember that kernel invocations are asynchronous (!).
A cudaDeviceSynchronize() call is needed
before getTimer()

CUDA - Course 71

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 4: Uncoalesced access patterns

► Modify the vector addition kernel from exercise 3 to use different access
patterns to the vector data
a) Add an offset to the input vectors, so it is no longer aligned

the way cudaMalloc() returns memory regions

C:
cudaMalloc((void**)&vector_x_alloc,

(vector_size+offset)*sizeof(float));
vector_x_gpu=vector_x_alloc+offset;
…
free(vector_x_alloc)

Fortran:
real, dimension(0:vector_size-1+offset), device :: vector_x_gpu
…
call VectorSum<<<…>>>(vector_x_gpu &

(offset:vector_size+offset-1),…)

Which effect do you expect on performance?
On Kepler, do you see for offsets on vector_c
a behavior different from that for vector_a and vector_b?

CUDA - Course 72

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 4: Uncoalesced access patterns

► Modify the vector addition kernel from exercise 3 to use different access
patterns to the vector data
b) Rewrite the kernel so that each thread operates

on one continuous region of vector indices
(stride is 1 instead of blockDim.x*gridDim.x):

C:
for(int i=my_start; i<my_end;i++)

Fortran:
do i=my_start,my_end-1,1

Do you expect higher or lower performance from this?
How large do you think the effect is?

CUDA - Course 73

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 5 (optional): Diffusion equation in 1D

► Each field point requires the values of its neighbors.

► CPU implementation:

void diffusion(float* input, float* output,

int size) {

for(int i=1; i<size-1; i++) {

output[i] = input[i]*(1.f-2.f*alpha) +

alpha*(input[i-1]+input[i+1]);

}

}

► Note: each input value is read 3 times,
but caching in L1 is expected

CUDA - Course 74

)2(
11

1 t

i

t

i

t

i

t

i

t

i
fffff

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 5: Diffusion equation in 1D

► Task:

• Modify the kernel of exercise 2 or 3 implement

a time step of the diffusion scheme on a 1D array

(or just take the solution exercise05_solution.cu/.f90)

• Re-adjust grid/block size for optimal performance

• Compare the performance to exercise 3

► Note: please notice that the input array needs to be 1

element larger on the beginning and the end (2 in total)

than the size of the computation.

Do not forget to add offsets where necessary

CUDA - Course 75

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Shared Memory

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

What is shared memory?

CUDA - Course 77

► Shared between all threads in the
same block
• Scope is per block

► Kepler:
• 16 kB or 48 kB per multiprocessor

► Organized into 32 banks

► As fast as registers
(if no bank conflicts happen,
discussed later)

► ‘user-managed cache’

► typical applications
• intermediate buffer

for global memory
to improve memory reuse

• Mechanism for fast exchange of
data between threads of the same
block

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can shared memory be used?

► In C local variables are being declared
to reside in shared memory
by the __shared__ declaration specifier:

__global__ void myKernel() {
__shared__ float data[size];
...

}

In Fortran local variables are being declared
to reside in shared memory
by the shared modifier:

attributes(global) subroutine myKernel()
real, shared, dimension(0,size-1) :: data
...

end subroutine myKernel

► Note: the array size has to be a compile time constant
• Fortran: be careful, compiler does not report the error,

but produces undefined results !

CUDA - Course 78

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Pointers to shared memory in C

► Pointers can point to both shared or global memory
without any special declaration:

__global__ void myKernel(float* input) {

__shared__ float sharedData[size];

float* a = input;

float* b = sharedData;

...

}

► Restriction on devices of compute capability < 2.0:
it must be possible to decide at compile-time
which memory a pointer points to
(the nvcc compiler produces a warning otherwise)

CUDA - Course 79

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Dynamically allocated shared memory

► C: shared memory can be allocated dynamically
by defining an extern __shared__ array of unknown size:

__global__ void myKernel() {
__shared__ float a[32];
extern __shared__ char dynamicSharedData[];
...

}

► Fortran: shared memory can be allocated dynamically
by defining an assumed size shared array:

attributes(global) subroutine myKernel() {
real, shared, dimension(*) :: data
...

end subroutine myKernel

► The size of the dynamic shared memory (in bytes) must be provided in the execution
configuration:

myKernel<<< gridSize, blockSize, dynamicSharedMemorySize >>>();

► Note: all dynamic shared arrays point to the same address.
• If multiple shared arrays are required the addresses

have to be corrected by hand (!)

CUDA - Course 80

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Synchronization

► How to assure that a read operation

to shared (or global) memory on one thread

happens after a write operation on another thread?

__global__ void myKernel() {

__shared__ float a[...];

// thread 0 writes a[0], thread 1 writes a[1], ...

a[threadIdx.x] = ...;

// thread 0 reads a[1], thread 1 reads a[2], ...

... = a[threadIdx.x+1];

}

CUDA - Course 81

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Synchronization

► Solution: the __syncthreads() function provides
a barrier synchronization for all threads in the block.
A thread which reaches the barrier waits until all threads of the block
have also reached the barrier.

__global__ void myKernel() {

__shared__ float a[...];

// thread 0 writes a[0], thread 1 writes a[1], ...
a[threadIdx.x] = ...;

__syncthreads();

// thread 0 reads a[1], thread 1 reads a[2], ...
... = a[threadIdx.x+1];

}

► Fortran:

call syncthreads()

CUDA - Course 82

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: matrix transpose 1/3

► Naive implementation:

__global__ void transpose(float* input, float* output,

int sizeX,int sizeY) {

int x=blockIdx.x*blockDim.x+threadIdx.x;

int y=blockIdx.y*blockDim.y+threadIdx.y;

output[x*sizeX+y]=input[y*sizeX+x];

}

► Problem: either read or write operation is not coalesced

CUDA - Course 83

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: matrix transpose 2/3

► Implementation using shared memory (block size = 16,16):

__global__ void transpose(float* input, float* output,

int sizeX, int sizeY) {

__shared__ float sharedMem[16][16];

int xIn = blockIdx.x*blockDim.x+threadIdx.x;

int yIn = blockIdx.y*blockDim.y+threadIdx.y;

sharedMem[threadIdx.y][threadIdx.x] = input[yIn*sizeX+xIn];

__syncthreads();

int xOut = blockIdx.y*blockDim.x+threadIdx.x;

int yOut = blockIdx.x*blockDim.y+threadIdx.y;

output[yOut*sizeY+xOut] =

sharedMem[threadIdx.x][threadIdx.y];

}

► Note: if sizeX or sizeY not multiple of 16, additional checks are needed

CUDA - Course 84

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Example: matrix transpose 3/3

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

CUDA Course 85

0 1 2

3 4 5

6 7 8

0 6 12 18 24 30

1 7 13 19 25 31

2 8 14 20 26 32

3 9 15 21 27 33

4 10 16 22 28 34

5 11 17 23 29 35

0 3 6

1 4 7

2 5 8

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Reduction operations

► Reduction operation

• Combine a set values

(which is distributed over multiple threads or blocks)

into one value

♦ E.g. by addition, multiplication, min, max

CUDA - Course 86

1

0

N

k

i
aA

1

0

N

k

i
aA),...,,max(

110

N
aaaA

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Reduction operations

► How to do this in CUDA?

• Operations are associative (in approximation),
so summation can be split

• Build partial sums for each thread separately

• Build partial sums for each block using shared memory

• Combine the per block results into end result

♦ Separate kernel is needed because kernel borders
are the only (sensible) way to synchronize multiple blocks

– Each block writes partial sum to global memory

– Separate kernel reduces the partial sums

♦ Note: Atomic operations can be used if the values are integers
– E.g. atomicAdd(int* globalSum, int value);

– See PG Appendix B.12

– Kepler and Fermi also have atomicAdd() for single precision floats

CUDA - Course 87

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Configuring Fermi/Kepler shared memory size

► Fermi and Kepler have in total 64 kB of memory per multiprocessor
which contains both L1 cache and shared memory

► It can be configured as
• 48 kB L1 cache and 16 kB shared memory

• 16 kB L1 cache and 48 kB shared memory

• 32 kB L1 cache and 32 kB shared memory (only Kepler)

► The function

cudaError_t cudaDeviceSetCacheConfig
(enum cudaFuncCache cacheConfig);

sets this configuration.

► cacheConfig may be:
• cudaFuncCachePreferNone: automatically selected (default)

• cudaFuncCachePreferShared: 48 kB shared memory
cudaFuncCachePreferEqual: 32 kB / 32 kB (Kepler only)

• cudaFuncCachePreferL1: 48 kB L1 cache

CUDA - Course 88

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercises 6+7: Scalar product

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 6: Scalar product using one block

► Write a CUDA program which computes the scalar product
between 2 vectors using just one multiprocessor

► Follow the structure from the shared memory session:
• Sum over all elements one thread processes

• Copy the ‘per thread’ results to shared memory

• Reduce the data in shared memory to one end result

► CPU code (exercise06_cpu.c):

float ScalarProduct(float* inputA,
float* inputB, int size) {

float sum=0;
for(int i=0;i<size;i++) {
sum += inputA[i] * inputB[i];

}
return sum;

}

CUDA - Course 90

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 7: Scalar product using multiple blocks

► Modify your program from exercise 6 to work

with multiple blocks

► Note:

You have to create a separate kernel

to reduce the partial results of the separate blocks

to the end result to be sure that

multiprocessor synchronization is done correctly

► Note:

For real world applications (especially when using cache),

reductions usually work also without using shared memory.

CUDA - Course 91

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Atomic Operations

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Atomic operations

► Synchronization between cores

not provided by programming model

• only complete device synchronization at kernel boundary

• CPU interoperation needed

♦ PCIe latency

• tightly coupled problems difficult to implement

► But device has atomic operations (add, min, max, CAS)

• What do atomic operations do?

• Answer: they allow a read-modify-write sequence

on a single variable in memory

without interference of other threads

CUDA - Course 93

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Atomic operations

► Example: 2 threads want to do x = x + 1

on the same variable x at the same time

► What happens actually within machine code (of one

thread)?

• x is read from memory to register

• value in register is incremented by 1

• value is written back from register to memory of x

CUDA Course 94

x → r

r → x

r=r+1

x → r

r → x

r=r+1

thread 1
thread 2

any kind of time overlap
between 3-step-sequences
results in one increment to be lost!

Atomic = no overlap will happen!

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Atomic operations

► Atomics often allow easy and efficient parallelization
of codes which are very hard to parallelize otherwise(!)
• assembly of FEM sparse matrices

• sorting algorithms

► Performance characteristics:
• highly efficient, if no conflict happens

♦ example: stream addition (a[i]=a[i]+1) on Tesla K20x
bandwidth normal addition: 154 GB/s
bandwidth atomic add: 139 GB/s

• Much slower in case of conflict
→ suitable for cases, when conflicts can happen, but are rare

♦ Slow down factor of up to 80, depending on number of conflicts

• Kepler architecture: greatly improved speed of atomics
♦ 32-bit integer atomicAdd() faster(!) than a[i]=a[i]+1

(in case no conflict happens)

CUDA - Course 95

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Atomic operations

► The following atomic operations are available
in CUDA device code
• atomicAdd (int32, uint32, uint64, float)

• atomicSub (int32, uint32)

• atomicExch (int32, uint32, uint64, float)
atomicCAS (int32, uint32, uint64)
= compare and swap
(swap is only executed if data equals a given compare value)

• atomicMin, atomicMax (int32, uint32)

• atomicInc, atomicDec (uint32)

• atomicAnd, atomicOr, atomicXor (int32, uint32)

► 32-bit operations are available
for both shared and global memory on all devices with CC ≥ 1.2
but 64-bit operations on shared memory require CC ≥ 2.0

► Note: for floating point, only atomicAdd and
only in single precision available (no min/max and no DP)

CUDA - Course 96

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Compare-and-swap

► What to do if different kind of atomic operation is required
(e.g. atomicAdd for double precision)?

► CAS-operation, equivalent to atomically done function:

int atomicCAS(int* address,int compare,int value)

{

int old=*address;

if (old==compare)

*address=value;

return old;

}

► This is known to allow to create arbitrary atomic operations

CUDA - Course 97

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Compare-and-swap

► Custom atomic operation using CAS:

► Principle: interference by other threads is detected,

and operation is repeated if needed

CUDA - Course 98

x → assumed

atomicCAS(x,assumed,new) → old

f(assumed,…) → new

repeat if old≠assumed

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Compare-and-swap

► atomicCAS exists only for integer types,
but reinterpretation functions (__…_as_…) help.

Example (atomicAdd for double precision):

typedef unsigned long long ull;

__device__ double atomicAdd(double* address, double inc)
{
ull *addressUll = (ull*)address;
ull oldValue=*addressUll;
ull assumedValue;
do {

assumedValue=oldValue;
ull newValue = __double_as_longlong

(__longlong_as_double(assumedValue)+inc);
oldValue=atomicCAS(addressUll,assumedValue,newValue);

}
while(oldValue!=assumedValue);
return __longlong_as_double(oldValue);

}

CUDA - Course 99

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Example: Particle sort using atomic adds

► Particle codes: sorting particles in spacial ‘cells’,

i.e. collecting particles for each cell in a list:

Pseudocode:

for(p in particles) {

cellList[int(p.position/cellSize)].append(p.index);

}

► Parallelize over particles

→ each list might be changed by any thread

► atomicAdds allows performant parallel implementation

→ exercise 9

CUDA - Course 100

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Bucket sort using atomic adds

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

P
e
rf

o
rm

a
n
c
e
 /
 p

a
rt

ic
le

s
/s

Number of particles

Particle sort (bucket sort) performance

Nehalem single-core @2.8 GHz

Nehalem 2 x 4 cores @2.8 GHz

Tesla C1060, CUDA using atomic adds

Tesla C2050, CUDA using atomic adds

CUDA - Course 101

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

List operations

► Linked-list:

► Append operation using atomicExch (Pseudocode)

newElement = new Element;

previousElement = atomicExch(list.last,newElement);

previousElement.next = newElement;

CUDA Course 102

List

Element 1 Element 2 Element 3

first last

next next

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Stack/Queue operations

► Stack:

► Append operation using atomicAdd (Pseudocode)

newElement = new Element;
index = atomicAdd(stack.size,1);
stack.dataPtr[index] = newElement;

► Note: this kind of stacks/queues can be used to implement
dynamic work scheduling over all blocks/threads

CUDA Course 103

Stack

Element 1 Element 2 Element 3

dataPtr[size-1]dataPtr[0]

dataPtr

size

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Synchronizing multiple blocks

► Atomic operations can be used

for synchronization between blocks → exercise 10

► Notes:

• Not all blocks execute in parallel for large block numbers

(limited by registers, shared memory usage, number of

concurrent warps and blocks per multiprocessor),

so inter-block barrier synchronization can cause deadlocks!

• To make sure data you wrote is visible to other blocks the
__threadfence() function needs to be called

CUDA - Course 104

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercises 8-10: Atomic Operations

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 8: reduction using atomic add

► Task:

• Modify the solution of exercise 7 to use atomic adds instead of

synchronization mechanisms

• Try 3 different versions

♦ add all sum terms directly (atomically) to global variable

♦ add up separate per-thread sums in register,

then add the per thread results to global result variable

♦ add per-thread results atomically to per-block result

in shared memory, then add per-block results atomically

to global result

♦ make sure that type real is “double” otherwise you will get a

rounding error (Fortran: set real kind “RK = 8”)

• How large are the performance differences?

CUDA Course 106

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 9: Sort particles using atomic adds

► Problem:

• An array of particles with coordinates (x,y) should be sorted

into a 2D grid of cells with width=1 each in both directions

• After the sorting operation, each cell shall have a list of

indices of the particles which reside there

• The lists are implemented as arrays of fixed size,

with an additional size variable per list

(which stores the actual current length):
int list[maxLength];

int listLength;

int myPosition = atomicAdd(&listLength,1);

list[myPosition] = …

CUDA - Course 107

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 9: Sorting particles using atomicAdds

► CPU code:

for(int i=0;i<particleCount;i++) {
int x = (int)positionsX[i];
int y = (int)positionsY[i];
int oldListSize =

cellParticleCounts[y*gridSizeX+x]++;
particleLists[(y*gridSizeX+x)

+gridSizeX*gridSizeY*oldListSize]=i;
}

► To parallelize over the particles (loop i) requires to increment
the list length (cellParticleCounts[…]) atomically,
because multiple particles may have the same cell

► Note: in the particlesLists array the list of one cell
is not stored consecutively but wit stride gridSizeX*gridSizeY
(the same list positions for different particles are stored consecutively)

CUDA - Course 108

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 9: Sorting particles using atomicAdds

► Task:

• Complete the kernel in exercise09_template.cu/.f90 by creating a
parallel CUDA version of the CPU implementation in
exercise09_cpu.c/.f90

• Use atomicAdd() or atomicInc() to avoid race conditions when
incrementing the list size

• Replace the atomic increment with a plain one.
Although the kernel now produces wrong results,
run it to see how large the performance impact
of using atomic operations is.

► Advanced exercise (C only):

• Replace the global memory reads of the particle positions and the
writes of the particle indices into the list
with uncached versions using PTX inline assembly

• Do you see a performance difference?

CUDA - Course 109

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 10 (optional): synchronization of blocks

► Task:
write a device function which barrier-synchronizes multiple blocks (as
__syncthreads() does
for multiple threads in the same block)
• Use the exercise10_template.cu/.f90 file

to verify that your function works.

► Notes:
• You can use atomicAdd() to count how many blocks

already reached the barrier.

• If you create a spinlock
while(*syncval!=blockDim.x) {
}
you need declare the variable that is waited on as volatile!

• Include a call to __threadfence() in your function
to make sure all data is visible to other blocks

• In Fortran volatile attribute is not translated correctly in GPU code (!),
but for reading syncval, also an atomic can be used (e.g. add zero)

CUDA - Course 110

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Performance Optimization II

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Shared memory banks

► Shared memory is organized into banks:

• Consecutive 32 bit words in shared memory belong to

consecutive memory banks

• If there are no bank conflicts

shared memory is as fast as registers

► Example: 4 memory banks

CUDA - Course 112

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

array with 32-bit elements

memory banks

…

4 banks → every 4th 32-bit word
resides in the same bank

n banks → every nth 32-bit word
resides in the same bank

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Bank conflicts

► What is a bank conflict?
• each bank can not deliver/store more than one 64-bit/32-bit word per clock cycle

► Fermi/Kepler architecture:
shared memory is organized in 32 banks
• accesses are per warp,

bank conflicts can happen between all threads in the same warp

► Older GPUs:
shared memory is organized in 16 banks
• accesses are per half-warp,

bank conflicts can only happen between threads in the same half-warp

► Rule for unconflicted accesses:
• Within a warp/half-warp no 2 threads access the same bank

• Exception:
♦ broadcast mechanism:

one 32-bit/64-bit word can be read from arbitrarily many threads

♦ (CC ≥ 3.x) access to sub-words of 32-, 64-bit words.

♦ (CC ≥ 3.x) access to consecutive 32-bit words aligned to 64-bit segments.

CUDA - Course 113

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Unconflicted shared memory accesses

CUDA - Course 114

► Unconflicted accesses:

• Each thread accesses

a different bank

• Right figure:

arbitrary permutations are allowed

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Conflicted shared memory accesses

CUDA - Course 115

► Conflicted accesses:

• multiple threads of the same half-

warp access the same bank

• left figure: 2-way conflict

• right figure: 8-way conflict

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Broadcasted shared memory accesses

CUDA - Course 116

► Broadcast mechanism:

• multiple threads

access the same 32 bit word

• right figure:

broadcast may be mixed

with unconflicted accesses

to other banks

• is as fast as unconflicted access

• CC ≤ 1.3: only one word

can be broadcast per cycle

• CC ≥ 2.0: multiple words

can be broadcast per cycle

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Shared memory - Changes in Kepler

► Kepler allows configuration of shared memory

► Can be set globally and per device function

• cudaDeviceSetSharedMemConfig(config)

• cudaFuncSetSharedMemConfig(func, config)

► The supported bank configurations are:

• cudaSharedMemBankSizeDefault (currently 32 bit)

• cudaSharedMemBankSizeEightByte (64 bit mode)

• cudaSharedMemBankSizeFourByte (32 bit mode)

CUDA - Course 117

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Shared memory in Kepler - 64 bit mode

► Consecutive 64 bit words in shared memory

belong to consecutive memory banks

• Suitable for 64-bit data elements, e.g. double precision

► Conflict determination also based on 64-bit words

► Example: 4 memory banks

CUDA - Course 118

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

array with 64-bit elements

memory banks

…

4 banks → every 4th 64-bit word
resides in the same bank

n banks → every nth 32-bit word
resides in the same bank

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Shared memory in Kepler - 32 bit mode

► Consecutive 32 bit words in shared memory

belong to consecutive memory banks (as for older devices)

► But within same 256 byte segment (64 32-bit words)

addresses with a distance of 32 32-bit words

cause no bank conflict

► Example: 4 memory banks

CUDA - Course 119

0 1 2 3

0 1 2 3

array with 32-bit elements
32 byte aligned

memory banks

…

4 5 6 7

8 9 10 11

12 13 14 15

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Strided access to shared memory

► Note: if you access shared memory in a strided fashion on CC ≤ 3.0
__shared__ float x[blockDim.x*n];
…x[threadIdx.x*n]…;

you will get bank conflicts if n is a multiple of 2.

► The same for is true for 2-dimensional arrays
when using threadIdx.x on the first array index (and n is again a multiple of 2)
__shared__ float x[blockDim.x][n];
…x[threadIdx.x][j]…;

► How to avoid bank conflicts if strided access patterns are necessary?

► Standard solution: choose the stride to be not a multiple of 2
by padding you data with one unused element per stride, e.g.

__shared__ float x[blockDim.x*(n+1)];
…x[threadIdx.x*(n+1)]…;

or for 2-dimensional arrays
__shared__ float x[blockDim.x][n+1];
…x[threadIdx.x][j]…;

CUDA - Course 120

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Shared memory applications

► Clever splitting of the problem and buffering in shared

memory can speed up things enormously

► General strategy:

• Copy data from global memory to shared memory

• Do (much) computation on data in shared memory

• Copy data back to global memory

► Examples

• Dense Matrix-Matrix-Multiplication (see PG)

• FFT

CUDA - Course 121

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Note on shared memory usage

► As accesses to global memory have long latency

to get full memory bandwidth latency hiding is necessary

• If the number of blocks is larger than the number of

multiprocessors, block execution will be overlapped

(multitasking)

as long as the available registers

and the available shared memory is enough

for multiple blocks

► Effect: using shared memory

can result in performance loss (!)

► Advice: decide carefully about the amount of shared

memory per block you request

CUDA - Course 122

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Texture memory

► Access to texture memory is not as fast

as access to shared memory

► But texture fetches are always coalesced and cached

► 2D or 3D textures

• Cache is optimized for access patterns localized in 2D or 3D

• Cache lines are not organized linearly but in 2D or 3D blocks

• Example application: matrix transpose

(although shared memory is faster)

CUDA - Course 123

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Texture memory applications

► L1 cache is typically faster than texture cache

• per default try to use L1/L2 cache instead of texture cache

► But L1/L2 cache still requires coalesced accesses
to be efficient

► The texture cache shows performance characteristics
completely different from the L1/L2 cache
→ uncoalesced accesses, which result
in good cache reuse, e.g. continuous regions per thread
as in exercise 4b or exercise 8
are faster via texture memory (!)

► Other application: prevent cache pollution

• Use texture memory to prevent data to be cached in L1

CUDA - Course 124

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Unroll pragma

► Control flow overhead is a more serious issue as on CPU

► So unrolling of loops is recommended
for computation bound problems

• Note on Fermi/Kepler effect is smaller than for older devices

► The unroll pragma can help here
#pragma unroll 8

for(int i=0;i<n;i++) {

…

}

► In Fortran this does not work, but compilation with –O3
sometimes results in automatic unrolling
(check PTX assembler output)

CUDA - Course 125

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PTX Assembler Output

CUDA - Course 126

► The CUDA compiler creates output
in the intermediate device-independent
(assembler-like) language PTX
which is compiled further
to device-specific CUBIN code
• E.g. PTX uses virtual registers

which are assigned to physical registers
during the PTX-to-CUBIN step

► Viewing the PTX output may
help to identify performance issues
(the CUDA compiler produces
not always optimal code)

► The option ‘--ptx’ forces
the Nvidia compiler to produce
a PTX output file

► Fortran: add option keepptx
to –Mcuda,
e.g. –Mcuda=cuda5.0,cc35,keepptx

.entry _Z6kernelPfS_ (

.param .u64 __cudaparm__Z6kernelPfS__a,

.param .u64 __cudaparm__Z6kernelPfS__b)

{

.reg .u16 %rh<4>;

.reg .u32 %r<5>;

.reg .u64 %rd<8>;

.reg .f32 %f<5>;

.loc 15 5 0

$LBB1__Z6kernelPfS_:

.loc 15 7 0

cvt.u32.u16 %r1, %tid.x;

mov.u16 %rh1, %ctaid.x;

mov.u16 %rh2, %ntid.x;

mul.wide.u16 %r2, %rh1, %rh2;

add.u32 %r3, %r1, %r2;

cvt.u64.s32 %rd1, %r3;

mul.lo.u64 %rd2, %rd1, 4;

ld.param.u64 %rd3, [__cudaparm__Z6kernelPfS__b];

add.u64 %rd4, %rd3, %rd2;

ld.global.f32 %f1, [%rd4+0];

mov.f32 %f2, 0f41300000; // 11

add.f32 %f3, %f1, %f2;

ld.param.u64 %rd5, [__cudaparm__Z6kernelPfS__a];

add.u64 %rd6, %rd5, %rd2;

st.global.f32 [%rd6+0], %f3;

.loc 15 8 0

exit;

$LDWend__Z6kernelPfS_:

} // _Z6kernelPfS_

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PTX inline assembly / cache operators

► CUDA 5.0 supports writing inline assembly in C device code

► Example: load and store instructions have modifiers
to specify caching behavior
• .ca=cache on all levels

• .cg=cache only in L2

• .cs=do not cache in L1/L2

► Load 32-bit float uncached from global memory:

float* address;
float v;
asm("ld.global.cs.f32 %0,[%1];\n“

: "=f"(v) : "l"(address) :);

► Store 32-bit int uncached to global memory:

asm("st.global.cs.s32 [%0],%1;\n“
::"l"(address),"r"(v));

► Note: setting the caching mode globally can be achieved
with the nvcc compiler option -Xptxas -dlcm=cg (or cs)

CUDA - Course 127

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on CUDA Fortran

► The PGI compiler uses intermediate C code
(CUDA Fortran→CUDA C→PTX Assembler)
→ sometimes performance issues

• Example: multidimensional arrays
are sometimes slower than index translation by hand

• Note: the intermediate CUDA C code can be reached
with the compiler option ‘keepgpu’:
pgfortran –Mcuda=5.0,keepgpu …

► Some features of newer CUDA versions
are not available in Fortran, yet:

• full unified address space support

♦ pinned arrays cannot be passed to kernels

• allocating memory from GPU code

• printing from GPU code (has bugs)

CUDA - Course 128

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

NVIDIA Visual Profiler

► Records various kinds of GPU performance-related
information during program execution

► Usage:
• nvvp (Cuda ≥ 4.0), computeprof (Cuda < 4.0)

• File→New

• Select project name and directory

• In tab ‘Session’ enter

♦ Executable path (‘Launch’)

♦ Working directory, program arguments (optional)

• In tabs ‘Profiler Counters’ and ‘Other Options’ select
the information you want to record

• Click ‘Start’

CUDA - Course 129

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

NVIDIA Visual Profiler

► Meaning of profiler counters:

CUDA - Course 130

gld uncoalesced Number of non-coalesced global memory loads

gld coalesced Number of coalesced global memory loads

gld request Number of global memory load

gld_32/64/128b Number of 32 byte, 64 byte and 128 byte global
memory load transactions

gst uncoalesced Number of non-coalesced global memory stores

gst coalesced Number of coalesced global memory stores

gst request Number of global memory store requests

gst_32/64/128b Number of 32 byte, 64 byte and 128 byte global
memory store transactions

local load Number of local memory loads

local store Number of local memory stores

tlb hit Number of instruction or constant memory cache hits

sm cta launched Number of instruction or constant memory cache misses

branch Number of threads blocks launched on a multiprocessor

divergent branch Number of divergent branches within a warp

instructions Number of instructions executed

warp serialize Number of thread warps that serialize on address
conflicts to either shared or constant memory

cta launched Number of threads blocks executed

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on CUDA Profiler

► The Hardware has a limited amount of profiling registers
• The program will be run multiple times

to collect all profiling information

• Attention: the results may become useless if the program does not run the same way each
time

♦ Random Number Generators

♦ OpenMP dynamic scheduling

► Most interesting: GPU time … plot
• Quick overview over time usage in complex application with many kernels

• Computation time vs. data transfer time

• Fortran and accelerator models: can be used to check for unnecessary data copy

► More interesting fields
• Profiler Output

♦ Static shared memory per block

♦ Registers per thread

♦ Occupancy = number of concurrent warps / maximum number of concurrent warps
– Note: it assumes only 1 MP in the GPU,

it is not considered if there are enough blocks to keep all MPs busy !

♦ Branch vs. divergent branch

• Summary Table
♦ Global mem … throughput

CUDA - Course 131

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Command line profiling

► CUDA profiling can be enabled manually

without the visual profiler

• e.g. for profiling MPI-parallel programs

► Either nvprof <options> <executable> <arguments>

► or set the environment variable COMPUTE_PROFILE=1

• Profiling information will be written into a log file

• Additional options

♦ COMPUTE_PROFILE_CSV=1 (switch output from

‘human readable’ to CSV format for import into visual profiler)

♦ COMPUTE_PROFILE_LOG=<filename> explicitly set logfile name

♦ COMPUTE_PROFILE_CONFIG=<filename>

set profiler configuration file

CUDA - Course 132

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Profiler configuration file

► The profiler configuration file is simply a list
of the records / counters the profiler should log (with one entry per line)

► The following entries may be allowed in the configuration file,
(depending on the compute capability of your hardware)

timestamp, gpustarttimestamp, gpuendtimestamp, streamid,
gridsize,threadblocksize,dynsmemperblock,stasmemperblock,regperthread,
memtransferdir, memtransfersize, memtransferhostmemtype,
local_load, local store, gld_request, gst_request,
divergent_branch, branch, sm_cta_launched,
gld_incoherent, gld_coherent, gld_32b, gld_64b, gld_128b,
gst_incoherent, gst_coherent, gst_32b, gst_64b, gst_128b,
instructions, warp_serialize, cta_launched,
prof_trigger_00...prof_trigger_07,
tex_cache_hit, tex_cache_miss, shared_load, shared_store,
inst_issued, inst_executed, warps_launched, threads_launched,
l1_global_load_hit, l1_global_load_miss

► Note: for devices of compute capability 1.x only 4 device counters
can be used at the same time!

► Note: a detailed description of these records can be found
in the Command Line Profiler User Guide

► Note: an example ‘profile.conf’ exists that records basic timing information

CUDA - Course 133

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Kernel time function

► In kernel code the function clock() returns the value of the

GPU time counter.

► Fortran: call gpu_time(value)

► The result is in GPU core clock cycles

► The clock rate returned by
cudaGetDeviceProperties()

can be used to convert the results to seconds

CUDA - Course 134

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Note for the Fermi and Kepler architecture

► Fermi supports 64 bit address space

but can only do 32 bit integer operations natively

• → Performance penalty on address operations

• If no more than 4 GB of memory is needed,

the compiler option ‘-m32’

can be used to switch back to 32 bit address mode

► Note: CUDA 4.0 unified addressing works only

in 64 bit mode

CUDA - Course 135

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Features of Kepler

► New multiprocessor design (SMX)
• A SMX contains 192 compute cores (old SM: 32)

and can execute within one cycle instructions from up to 4 warps
(up to 2 instructions per warp)

• Roughly half GPU clock rate (C2050: 1150 MHz, GTX680: 700 MHz)

• Note: warp size stays 32 threads!

► Kepler I (e.g. GTX680): only 8 SMX (Fermi 14-16 SM)
• Multiprocessors became larger, but fewer

• Little DP performance (1/24 of SP, Fermi C20xx: 1/2)

• Very fast atomics

• Ratio of registers and shared memory to compute cores smaller
♦ Fermi: 32k registers, 16/48 kB shared memory, 32 compute cores per SM

♦ Kepler I: 64k registers, 16/32/48 kB shared memory, 192 compute cores per
SMX

► Kepler II (Tesla K20X)
• Again high DP performance (1/3)

• Higher memory bandwidth (250 GB/s)

CUDA Course 136

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Summary of optimization tactics

► Stencil-based operators (FDTD, Lattice Boltzmann)
• Fermi L1 cache

► Reduction
• 2 Kernels:

♦ A: reduction per thread, then per multiprocessor

♦ B: reduction over the per multiprocessor results

• Atomic adds

► Sparse Matrix-Vector-Multiplication
• Padding of matrix data for coalesced accesses (ELLPACK-R)

• In some cases caching of input vector in texture memory is of advantage

► Dense Matrix-Matrix-Multiplication
• Blocking in Shared Memory

► Fast Fourier Transform
• Blocking in Shared Memory

► Sorting
• Bitonic Merge Sort with blocking in shared memory

• Bucket sort / radix sort can be done using atomic adds

► Assembling of FEM matrices
• Atomic adds

CUDA - Course 137

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercise 11: Small matrix-matrix multiplications

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Computation task

► A multiplication of 2 matrices A (N x N), B (N x N)

can be done independently for each element of C:

► The operation can be done easily using one CUDA block
of sizes N x N

► Note: the problem is of course too small
to use all multiprocessors efficiently
• But if many such matrix multiplications need to be done

each CUDA block can process one MM

CUDA - Course 139

BAC

1

0

N

k

kjikij
BAC

MBlock

1

0

(M)(M)(M)

N

k

kjikij
BAC

0Block

1

0

(0)(0)(0)

N

k

kjikij
BAC

1Block

1

0

(1)(1)(1)

N

k

kjikij
BAC

… …

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Optimized version

► Disadvantage of naïve CUDA implementation:

each element of A and B is read N times

► Buffer the matrices A,B in shared memory

► Algorithm:

• Each thread copies one element of the N x N matrices

A and B to shared memory

• Each thread computes the sum for one element of matrix C

► Advantage: each element of A or B is only read

once from global memory

CUDA - Course 140

1

0

N

l

ljilij
BAC

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Task

► Complete the template program exercise11_template.cu
to copy matrices A,B to shared memory before computation.

► Use 2D static arrays for the shared data:
__shared__ float sharedA[T][T];
__shared__ float sharedB[T][T];

► Note: the program computes MMs for many matrices of the same size N x N
• Each block processes one matrix multiplication

• The multiple matrices A(i) (or B(i) or C(i)) are stored consecutively in memory

► Note: the matrices in global memory Auv, Buv, Cuv are stored
in a linear array with the mapping

indexlinear = m*N2 + u*N + v

where m is the index of the small NxN matrix
in the list of the many small matrices to be multiplied

CUDA - Course 141

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Advanced Exercise

► Is it better to store the matrix elements Bij

as B[i][j] or B[j][i]in shared memory?

Why? How is it for Aij?

• Hint: think about bank conflicts

during the accesses to shared memory

• Can you think of a trick to use the ‘bad’ storage ordering for B

and still get performance as fast as for the good ordering?

► Try to change the shared arrays to 1-dimensional arrays

(Fortran only)

Do you see a performance change? Why?

CUDA - Course 142

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Answers

► Is it better to store the matrix elements Bij as B[i][j] or as
B[j][i]?
• Answer: B[i][j] is considerably faster

► Why?
• Answer: because the shared array is accessed as
shared_b[l][threadIdx.x] when using B[i][j]
and as shared_b[threadIdx.x][l] when using B[j][i].
The second way will cause a bank conflict on every access

► How is it for Aij?
• Answer: it matter much less because shared_a is read either

as shared_a[threadIdx.y][l]
or as shared_a[l][threadIdx.y]
which does not depend on threadIdx.x.

The only location it matters is when reading A from global to shared
memory which happens much fewer times.

CUDA - Course 143

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Answers

► Can you think of a trick to use the ‘bad’ storage ordering for B

and still get performance as fast as the for the good ordering?

• Yes, use the standard trick for strided shared memory accesses
and allocate shared_b as

__shared__ float

shared_b[matrixSize][matrixSize+1];

► Try to change the shared arrays to 1-dimensional arrays

(Fortran only)

Do you see a performance change? Why?

• Because the Cuda Fortran to Cuda C compiler also converts

Fortran 2D arrays to C 1D arrays, but the Cuda C code

is often more efficient if used on 1D arrays directly in Fortran

CUDA - Course 144

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Advanced Features

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Getting hardware information

► Number of devices in system:
cudaGetDeviceCount(int ∗ count);

► Name and properties of device:
cudaGetDeviceProperties(cudaDeviceProp∗ prop,

CUdevice dev);

► Note: try running the example program deviceinfo.cu,
it prints most of the information returned by
cudaGetDeviceProperties()

CUDA - Course 146

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Getting hardware information
► Example: GTX 680 hardware information

(deviceinfo.cu results):

device name: GeForce GTX 680
global memory: 2147155968 bytes
maximum shared memory per block: 49152 bytes
maximum number of registers per block: 65536
warp size: 32
maximum number of threads per block: 1024
maximum block dimensions : (1024,1024,64)
maximum grid dimensions: (2147483647,65535,65535)
maximum number of threads per multiprocessor: 2048
GPU clock frequency: 705.500000 MHz
memory clock frequency: 3004.000000 MHz
total constant memory: 65536 bytes
compute capability: 3.0
can execute multiple kernels concurrently: yes
can overlap data transfer and computation: yes
can overlap data transfers from/to device: no
can map host memory: yes
unified address space enabled: yes
number of multiprocessors: 8
compute mode: default (multiple processes/threads per device)
kernel timeout enabled: no
ECC memory enabled: no
is integrated device: no
memory bus width: 256 bits
size of L2 cache: 524288 bytes

CUDA - Course 147

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Unified address space

► All types of memory the device can access
reside in the same address space.
Pointers to all of these memories can directly be passed to kernels.
• Global memory

• Shared memory

• Constant memory

• Page-locked host memory

• Global memory of other GPUs on the same host (‘GPUdirect’)

► Prerequisites:
• Fermi GPU (CC ≥ 2.0)

• 64 bit address space

• CUDA 4.0

► Note: in Fortran not really supported, yet
• Consequence: host memory can not be accessed directly

♦ pinned arrays cannot be passed to kernels

♦ but access of memory of other GPUs should be possible

CUDA - Course 148

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Zero-copy host memory access / peer-to-peer access

► Zero-copy host memory access
• direct dereferencing of pointers to CPU memory on device

• works only on page-locked host memory

• with unified address space no further conditions

• older devices:
♦ enable zero-copy access for device:
cudaSetDeviceFlags(cudaDeviceMapHost);

♦ allocate page-locked host memory with device mapping:
cudaHostAlloc(&ptr,size,cudaHostAllocMapped);

♦ translate CPU address to GPU address:
cudaHostGetDevicePointer(&gpu_ptr,cpu_ptr,0);

• Fortran: same API functions, but works on type(c_ptr), type(c_devptr)
→ is necessary as CUDA Fortran is not aware of unified addressing

► Peer-to-peer-access
• Prerequisites: unified address space, both GPUs on same PCIe bus

• Enable peer-to-peer-access from active device to peer device:
cudaDeviceEnablePeerAccess(peer_device,0);

CUDA - Course 149

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Streams

► Streams are a mechanism to allow and manage

concurrent execution of multiple kernels or

memory copy operations and kernels

► cudaStream_t stream;

► Basic principle of operation:

• Each operation on the device is attached to a stream

(calls that do not provide a stream handle are attached to the

default stream, called ‘stream 0’)

• Operations on the same stream are always executed in serial

• Operations on different streams may be executed in parallel

CUDA - Course 150

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Usage of streams

► Creation
cudaStream_t stream;
cudaStreamCreate(&stream);

► Cleanup
cudaStreamDestroy(stream);

► Asynchronous copy attached to a stream
cudaMemcpyAsync(dest, src, size, type, stream);

• Note: concurrency only works with page-locked memory!

• Note: PCIe bus is bidirectional. CC ≥ 3.0 can do 2 copies
(1 to device / 1 to host) concurrently

• Note for Fortran: memcpy operations exist also
♦ but do not need a type (direction is derived from src and dest types)

♦ size is in array elements, not in bytes (!)

► Kernel call attached to a stream
MyKernel<<<grid, block, shared_mem, stream>>>(…);

► Waits for all operation of a specific stream
cudaStreamSynchronize(stream);

► Wait for all operations of all streams (including stream 0)
cudaDeviceSynchronize();

CUDA - Course 151

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Notes on streams

► Concurrency between kernel execution and copy from/to device

is possible exactly if the device property ‘deviceOverlap’ is set

► Concurrency between multiple kernels is possible

exactly if the device property ‘concurrentKernels’ is set

• Note: very useful if many small kernels need to be executed!

► Some tasks

(page-locked host memory allocation, device memory allocation,

device-to-device memory copy, operations to stream 0)

disable concurrency between an operation before and after them

CUDA - Course 152

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Executing parallel streams

► Special care needs to be taken when executing streams

CUDA Course 153

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

kernel A

memcpy C

Stream 0

Stream 1

memcpy A

memcpy B

memcpy C

memcpy A

memcpy B

memcpy C

Copy Engine

kernel A

kernel A

Kernel Engine

With one copy engine second kernel has to wait for first one to finish.

cudaMemcpyAsync(dev_a0,…,stream0);

cudaMemcpyAsync(dev_b0,…,stream0);

kernel<<<block,grid,0,stream0>>>

(dev_a0,dev_b0,dev_c0);

cudaMemcpyAsync(host_c0,…,stream0);

cudaMemcpyAsync(dev_a1,…,stream1);

cudaMemcpyAsync(dev_b1,…,stream1);

kernel<<<block,grid,0,stream1>>>

(dev_a1,dev_b1,dev_c1);

cudaMemcpyAsync(host_c1,…,stream1);

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Executing parallel streams II

► Solution: Reorder copy operations

CUDA Course 154

memcpy A

memcpy B

kernel A

memcpy C

memcpy A

memcpy B

kernel A

memcpy C

Stream 0

Stream 1

memcpy A

memcpy B

memcpy A

memcpy B

memcpy C

memcpy C

Copy Engine

kernel A

kernel A

Kernel Engine

Kernels can run in parallel now.

cudaMemcpyAsync(dev_a0,…,stream0);

cudaMemcpyAsync(dev_b0,…,stream0);

kernel<<<block,grid,0,stream0>>>

(dev_a0,dev_b0,dev_c0);

cudaMemcpyAsync(dev_a1,…,stream1);

cudaMemcpyAsync(dev_b1,…,stream1);

kernel<<<block,grid,0,stream1>>>

(dev_a1,dev_b1,dev_c1);

cudaMemcpyAsync(host_c0,…,stream0);

cudaMemcpyAsync(host_c1,…,stream1);

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Hyper-Q in Kepler K20x

CUDA Course 155

- Only C&P and R&X run concurrently
- Only one work queue - All streams can run concurrently

- 32 work queues
Notes:
• CUDA 5.5 and CC ≥ 3.5 allow 32 MPI-processes to use the device concurrently in

proxy mode.
• On CRAY: export CRAY_CUDA_PROXY=1

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Using multiple GPUs

► With CUDA 4.0 or higher:

• cudaSetDevice(int device_index);
can be used to switch between devices

• All following CUDA API calls are using the active device
♦ Memory allocations

♦ Stream creation

♦ …

• Note: streams are always bound to one device
→ it is not possible to attach operations on device A
to a stream belonging to device B or vice versa

• Note: cudaDeviceSynchronize() waits only for operations
on the active device (!)

• When programming multithreaded,
the active device (‘device context’)
is set for the calling thread only,
each thread may have a different active device

CUDA - Course 156

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Using multiple GPUs

► CUDA 4.0 example for 2 GPUs:

cudaSetDevice(0);

…start some asynchronous operations for device 0…

…(cudaMemcpyAsync or kernel calls)…

cudaSetDevice(1);

…start some asynchronous operations for device 1…

cudaSetDevice(0);

cudaDeviceSynchronize();

cudaSetDevice(1);

cudaDeviceSynchronize();

CUDA - Course 157

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Using multiple GPUs

► Older CUDA versions:

• cudaSetDevice(int device_index);

can be used to set device for host thread

• Restriction:

after usage of device device context cannot be changed again

for the current thread

(except by usage of low-level driver API cuCtx… functions)

• Simplest solution:

create multiple host threads with OpenMP,

each thread operates only on one device

CUDA - Course 158

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Using multiple GPUs with OpenMP

► OpenMP Example for 2 GPUs:

#pragma omp parallel
{

int thread=omp_get_thread_num();
if (thread==0) {
cudaSetDevice(0);
…cuda code for device 0…
cudaDeviceSynchronize();
…
} else if (thread==1) {
cudaSetDevice(1);
…cuda code for device 1…
cudaDeviceSynchronize();
…
}

}

► Note: Even with CUDA 4 sometimes using multiple (OpenMP)
host threads when working with multiple GPUs has advantages:
• No need to switch between devices all the time

• No need to use asynchronous copies

CUDA - Course 159

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Using multiple GPUs with OpenMP (Fortran)

► OpenMP Example for 2 GPUs:

!$omp parallel
thread = omp_get_thread_num()
if (thread==0) then
print *,'starting computation on GPU 0‘
error = cudaSetDevice(0)
…cuda code for device 0…

else if (thread==1) then
print *,'starting computation on GPU 1‘
error = cudaSetDevice(1)
…cuda code for device 1…

end if
!$omp end parallel

CUDA - Course 160

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Data transfer between devices

► With unified address space:

• cudaMemcpy() with kind = cudaMemcpyDefault

works for all kinds of copies including peer-to-peer copy

• Note: kind = cudaMemcpyDeviceToDevice

does not work for peer-to-peer copy!

► With CUDA 4.0 but CC < 2.0

• cudaMemcpyPeer(void* destAddress, int destDevice,

void* srcAddress, int srcDevice, size_t bytes);

• works always, but direct peer-to-peer copy is only done

if hardware supports it

• Note: call is asynchronous,

but serialized with other operations on stream 0

(like kernel calls without stream specification) !

CUDA - Course 161

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PCIeNetwork

Using multiple GPUs on different nodes

► What if you want to use more GPUs
than are available to one host / node?

► Answer: distributed memory parallelism,
e.g. with MPI (Message Passing Interface)
• There are separate courses on MPI at HLRS

► Principle: multiple CPUs in a cluster cooperate
by sending messages over a fast local network (Infiniband, etc.)

► MPI+CUDA: no problem in principle,
but for cooperation messages have to be transferred 3 times:

► Compilation of MPI+CUDA programs:
both MPI and CUDA have their own compiler drivers (mpicc and nvcc)
• Suggestion: linking of CUDA code to other executables is quite simple

♦ compile CUDA code with nvcc to an object file with ‘-c’

♦ link the CUDA object file into the executable with mpicc:
for linking only the library libcudart is required (‘-lcudart’)

CUDA - Course 162

DeviceA Host A Host B DeviceB
PCIe

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Texture memory

► Resides in global memory

• But read only

♦ Note: with CUDA ≥ 3.1 and Fermi
‘surface memory’ allows read/write

• And with 8 kB cache per multiprocessor

► typical applications:

• Heavily reused read only data with irregular access patterns

♦ sometimes faster than Fermi L1 cache

♦ Note: Access patterns unsuitable for L1 cache
perform sometimes better with texture cache
(example: pattern as in exercise 4 a)

► Can be configured to use optimized caching
for 1-, 2- or 3-dimensional locality in access patterns

CUDA - Course 163

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can texture memory be used?

► A region of global memory can be bound as texture memory by
using texture references:

► Step 1: declaring the texture reference

texture<Datatype, Dimension> texRef;

Note: the parameter Dimension is optional

► Note: texture references (texRef) need to be defined
as plain global variables (not: arrays, local variables)
and cannot be passed as kernel arguments

► Note: texture/surface memory is not implemented
in Cuda Fortran

CUDA - Course 164

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can texture memory be used?

► Step 2: telling the texture reference which array
binding the array of global memory to the texture reference:

• For 1D textures
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc<Datatype>();

cudaBindTexture(NULL, &texRef, memoryPtr,

&channelDesc, memorySize);

with
memorySize = sizeof(Datatype) * arraySize

► Note: the cudaChannelFormatDesc is a helper struct to tell the
bind function which datatype

► Note: binding means an existing region of global memory can be
accessed through the texture reference.
The original data is not copied(!)

CUDA - Course 165

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can texture memory be used?

• for 2D-textures

cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc<Datatype>();

cudaBindTexture2D(NULL, &texRef, memoryPtr,
&channelDesc, arraySizeX, arraySizeY, pitch);

where pitch specifies the offset in bytes
to move from one ‘line’ to the next in memory.
It is used to calculate the address of an element:

address = baseAddr +
pitch*indexY + sizeof(Datatype)*indexX

• Note: the pitch is required to be a multiple of a certain page-size given by
cudaDeviceProp::texturePitchAlignment (Kepler: 512 bytes).
If your arraySizeX is not already aligned, padding must be added(!)

• If your arraySizeX is already aligned simply choose
pitch = sizeof(Datatype) * arraySizeX

CUDA - Course 166

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can texture memory be used?

► Step 3: now the texture memory can be used
from inside the kernel:

void __global__ myKernel() {
...
... = ... tex1D(tex_ref_1d, index) ... ;
... = ... tex1Dfetch(tex_ref_1d, index) ... ;
... = ... tex2D(tex_ref_2d, indexX, indexY) ... ;
... = ... tex3D(tex_ref_3d,

indexX, indexY, indexZ) ... ;
...

}

► Note: the functions tex1D, tex2D, tex3D
take a 32-bit float value as index,
tex1Dfetch takes a 32-bit int value as index.
• for large 1D-arrays tex1Dfetch should be used

to avoid rounding problems (!)

CUDA - Course 167

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Advanced features of texture memory

► Linear filtering:

• It is possible to configure texture memory to

do linear/bilinear/trilinear interpolation of

array data

CUDA - Course 168

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Constant memory

► Resides in separate constant memory space

• Read only

• With 8 kB cache per multiprocessor

► Restrictions:

• Not dynamically allocable

• Maximum size is 64 kB per device

CUDA - Course 169

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

How can constant memory be used?

► Global variables or arrays are being declared
to reside in constant memory
by the __constant__ declaration specifier:

__constant__ float data[size];

CUDA - Course 170

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Accessing constant memory from GPU code

► Constant memory can be accessed normally
from device code:

__constant__ float data[size];

void __global__ myKernel() {
...
= ...data[...]...;
...

}

► Note: on Fermi/Kepler constant memory is also used implicitly
to store kernel ‘function call’ arguments

CUDA - Course 171

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Accessing constant memory from host code

► Constant memory cannot be accessed directly from host code, but
copied:

cudaError_t cudaMemcpyToSymbol(const char* symbol,
const void* src, size_t count, size_t offset,
enum cudaMemcpyKind kind);

cudaError_t cudaMemcpyFromSymbol(void* dst,
const char* symbol, size_t count, size_t offset,
enum cudaMemcpyKind kind);

► Note: in host code constant memory variables or arrays
are not variables or arrays but symbols
• A symbol is a string identifier (type = const char*)

known by the CUDA runtime

• Do not try to read, write or use pointer arithmetic
on constant memory symbols (!)

CUDA - Course 172

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

C++ classes

► For devices of compute capability ≥ 2.0 it is easily possible
to use non-polymorphic C++ classes
• non-polymorphic = no virtual functions

► Syntax:
class foo {

int x,y,z;
float *a,*b;

__device__ foo(…) { // constructor as device function
…

}
__device__ void f(…) { // method as device function

…
}
…

};

► Note: kernels (__global__) functions may not be static class members

► Note: static class data members cannot be accessed from device code

CUDA - Course 173

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Polymorphic C++ classes

► are possible with CC ≥ 2.0 but has an important restriction

► Objects allocated in host code can only be used on host !

► Objects allocated in device code can only be used
on device !

• Remark: use new and delete operators in device code

► Reason: virtual function table is different
for host and device classes

► Note: STL containers do not work on device,
as methods are not declared as device functions

• Thrust template library (open source)
can do some container operations
(called from host, with data on GPU)

CUDA - Course 174

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

IEEE-exact arithmetic

► Default behavior:

• rounding-mode: round-to-nearest-even

• T10: SP denormals are flushed to zero,

Fermi: SP denormals are kept
(use –ftz=true for old behavior)

♦ DP denormals are kept on both architectures

♦ Note: denormal computations are full speed, contrary to x86!

• Float additions and multiplications are sometimes replaced

by fused-multiply-adds (FMA) by choice of the compiler!

♦ This can be suppressed by replacing * and + with

__fadd_rn(x,y), __dadd_rn(x,y)

__fmul_rn(x,y), __dmul_rn(x,y)

__fmaf_rn(x,y,z), __fma_rn(x,y,z)

CUDA - Course 175

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

IEEE-exact arithmetic

► Controlling rounding modes:
• Can be controlled per function, suffix specifies rounding:
_rn: round to nearest even
_rz: round towards zero
_ru: round upwards (towards positive infinity)
_rd: round downwards (towards negative infinity)

• Functions:
__fadd_r?(x,y), __dadd_r?(x,y): add x+y
__fmul_r?(x,y), __dmul_r?(x,y): multiply x*y
__fmaf_r?(x,y,z), __fma_r?(x,y,z): fused-multiply-add x*y+z
__frcp_r?(x), __drcp_r?(x): reciprocal 1/x
__fdiv_r?(x,y), __ddiv_r?(x,y): division x/y
__fsqrt_r?(x), __dsqrt_r?(x): square root of x

► Note: see Appendix D in PG for more information
on IEEE arithmetic functions

CUDA - Course 176

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercise 12: Advanced features

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU 1

halos

Exercise 12: Using 2 GPUs using MPI

► Task:

• Implement a 2D finite difference code on 2 GPUs

• Algorithm:

♦ each field point requires the values

of each its left, right, top, bottom neighbor

• Parallelization technique: domain decomposition

CUDA - Course 178

)4(
,1,1,,1,1,

1

,

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji

t

ji
fffffff

GPU 0

first/last calculated line is copied to other GPU after each time step

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 12: Using 2 GPUs using MPI

► Single-GPU CUDA kernel for heat equation in 2D:

void __global__ diffusion(int sizeX,int sizeY,
float* input,float* output) {

int myX=blockIdx.x*blockSizeX+threadIdx.x+1;
int myY=blockIdx.y*blockSizeY+threadIdx.y+1;
if (myX>=sizeX-1 || myY>=sizeY-1)
return;

int index=myY*sizeX+myX;

output[index] = input[index]*(1.-4.*alpha) +
alpha*(input[index-1] + input[index+1] +

input[index-sizeX] + input[index+sizeX]);

}

CUDA - Course 179

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 12: Using 2 GPUs with MPI (C)

► The exercise12_mpi_template.cu contains the distribution of the

field to two processes with one GPU each.

Only the host/device copy of boundary is missing.

► Note: Use GNU compiler environment for Cray wrappers

• module swap PrgEnv-cray PrgEnv-gnu

► Note: To compile use CUDA compiler for .cu files and Cray MPI

compiler wrapper for host code and linking

• nvcc -c -arch=compute_35 exercise12_mpi_template.cu

• cc exercise12_mpi_main.c exercise12_mpi_template.o

► Note: To access one GPU with two MPI processes concurrently

• export CRAY_CUDA_PROXY=1

• aprun -n 2 ./a.out

CUDA Course 180

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 12: Using 2 GPUs with MPI (Fortran)

► The exercise12_mpi_template.f90 contains the distribution

of the field to two processes with one GPU each.

Only the host/device copy of boundary is missing.

► Note: To compile use Cray MPI compiler wrapper

• ftn -Mcuda,cc35,cuda5.5 exercise12_mpi_template.f90

► Note: To access one GPU with two MPI processes concurrently

• export CRAY_CUDA_PROXY=1

• aprun -n 2 ./a.out

CUDA Course 181

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

CUDA Libraries

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

CUDA - Course

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Overview

► NVIDIA provides with CUDA 5 important libraries for

• simple dense linear algebra (CUBLAS)

• sparse linear algebra (CUSPARSE)

• Fast Fourier Transform (CUFFT)

• pseudorandom number generation (CURAND)

► Mode of operation:

• GPU memory allocation and copy is done manually by user
with the normal CUDA API (cudaMalloc(), cudaMemcpy())

• Library functions are called from host and get passed pointers
to global device memory

• Exception: CURAND contains device functions
to generate random numbers from GPU code

CUDA - Course 183

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

API initialization (CUBLAS and CUSPARSE)

► All libraries require certain data structures to be initialized before they can
be used

► CUBLAS and CUSPARSE require handles to be created for use with all
following library calls

► CUBLAS:
cublasHandle_t cublasHandle;
cublasStatus_t status = cublasCreate(&cublasHandle);
…
cublasDestroy(cublasHandle);

► CUSPARSE:
cusparseHandle_t cusparseHandle;
cusparseStatus_t status =

cusparseCreate(&cusparseHandle);
…
cusparseDestroy(cusparseHandle);

CUDA - Course 184

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

API initialization (CUFFT)

► CUFFT: a plan needs to be created, which contains the data needed for doing FFTs
of a certain dimension, size and type:

cufftResult
cufftPlan1d(cufftHandle* plan, int size, cufftType type, int batch);
cufftResult
cufftPlan2d(cufftHandle* plan, int sizeX, int sizeY, cufftType type);
cufftResult
cufftPlan3d(cufftHandle* plan, int sizeX, int sizeY, int sizeZ,

cufftType type);

► Type may be:
• CUFFT_R2C = Real to complex (interleaved)

• CUFFT_C2R = Complex (interleaved) to real

• CUFFT_C2C = Complex to complex, interleaved

• CUFFT_D2Z = Double to double‐complex

• CUFFT_Z2D = Double‐complex to double

• CUFFT_Z2Z = Double‐complex to double‐complex

► batch allows to do multiple FFTs with one call (using consecutive array elements)

► Plans have to be released with the cufftDestroy() function:
cufftResult cufftDestroy(cufftHandle plan);

CUDA - Course 185

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

API initialization (CURAND)

► CURAND host API: a ‘generator’ needs to be created:

curandStatus_t curandCreateGenerator
(curandGenerator_t∗ generator, curandRngType_t type)

► Type specifies the used method of random number generation. Possible values are:

CURAND_RNG_PSEUDO_DEFAULT
CURAND_RNG_PSEUDO_XORWOW
CURAND_RNG_QUASI_DEFAULT
CURAND_RNG_QUASI_SOBOL32
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
CURAND_RNG_QUASI_SOBOL64
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64

► Generators need to be freed with curandDestroyGenerator():
curandStatus_t
curandDestroyGenerator(curandGenerator_t generator)

► CURAND device API: curand_init(…,&state) is used to initialize
the generator state. No destroy is necessary with device API.
State can be different data structures, depending on generation mechanism.

CUDA - Course 186

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Streams

► The libraries allow setting the CUDA stream for a handle:

cufftResult
cufftSetStream(cufftHandle plan, cudaStream_t stream)

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

cusparseStatus_t
cusparseSetKernelStream(cusparseHandle_t handle,

cudaStream_t streamId)

curandStatus_t
curandSetStream (curandGenerator_t generator,

cudaStream_t stream)

► Note: if many small kernels are executed, e.g. with CUBLAS,
setting streams allows overlapping concurrent execution with Fermi devices

CUDA - Course 187

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUBLAS functions

► BLAS standard is completely implemented
• Level 1: vector operations

• Level 2: matrix-vector operations

• Level 3: matrix-matrix operations

►

Naming conventions:
all functions for mathematical operations are of the form

cublasStatus_t cublas<T><operation>(cublasHandle_t handle, ...)

• A single letter ‘T’ is used for the datatype
(S=float, D=double, C=complex float, Z=complex double)

• Example: compute 2-norm of vector (single or double precision)

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,
const float* x, int incX, float* result)

cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
const double* x,
int incX, double* result)

• Note: most functions have stride (increment) specifications of array elements (here: incX)
for strided storage of vectors

CUDA - Course 188

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUBLAS functions
► 2-norm of vector

cublasStatus_t cublas<T>nrm2(cublasHandle_t handle, int n,
const T* x, int incX, T* result)

► Sum of absolute values of vector

cublasStatus_t cublas<T>asum(cublasHandle_t handle, int n,
const T* x, int incX, float *result)

► Scalar product

cublasStatus_t cublas<T>dot (cublasHandle_t handle, int n,
const T* x, int incX,
const T* y, int incY,
T* result)

CUDA - Course 189

k

k
x

2

k

k
x

k

kk
yx

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUBLAS functions

► Vector addition with scaling

cublasStatus_t cublas<T>axpy(cublasHandle_t handle, int n,
const T* alpha,
const T* x, int incX,
T* y, int incY)

► Matrix-vector multiplication

cublasStatus_t cublas<T>gemv(cublasHandle_t handle,
cublasOperation_t transpose,
int m, int n,
const T* alpha,
const T* A, int pitchA,
const T* x, int incX,
const T* beta,
T* y, int incy)

CUDA - Course 190

yxy

yxAy

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUBLAS functions

► Matrix-matrix multiplication

cublasStatus_t
cublas<T>gemm(cublasHandle_t handle,

cublasOperation_t transposeA,
cublasOperation_t transposeB,
int m, int n, int k,
const T* alpha,
const T* A, int pitchA,
const T* B, int pitchB,
const T* beta,
T* C, int pitchC)

CUDA - Course 191

CBAC

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUSPARSE csr storage format

► Sparse matrix is stored in compressed sparse row (CSR) format

► Matrix A =

► Nonzero elements are stored row-wise in 1D-array

matrixAValues =

► Column index array stores positions in row in original matrix
matrixAColumnIndices =

► Row pointer array stores beginning of original matrix rows
in matrixAValues and matrixAColumnIndices
matrixARowPointers =

CUDA - Course 192

1 4 5

2 7

3 6

1 4 5 2 7 3 6

2 4 5 1 2 3 5

1 4 6 8

First row NZ elements are in 2nd, 4th, 5th column

2nd row elements start at 4th entry, 3rd row elements start at 6th entry

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUSPARSE functions

► Sparse matrix-vector multiplication with matrix
in compressed sparse row format

cusparseStatus_t
cusparse<T>csrmv(cusparseHandle_t handle,

cusparseOperation_t transpose,
int m, int n, int nnz, T* alpha,
const cusparseMatDescr_t descrA,
const T* matrixAValues,
const int* matrixARowPointer,
const int* matrixAColumnIndices,
const T* x, T* beta, T* y)

CUDA - Course 193

yxAy

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUSPARSE matrix description
► CUSPARSE matrices need a matrix description data structure

typedef struct {
cusparseMatrixType_t MatrixType;
cusparseFillMode_t FillMode;
cusparseDiagType_t DiagType;
cusparseIndexBase_t IndexBase;

} cusparseMatDescr_t;

► The data structure should be initialized with
cusparseStatus_t
cusparseCreateMatDescr(cusparseMatDescr_t *descrA)

and released with
cusparseStatus_t
cusparseDestroyMatDescr(cusparseMatDescr_t descrA)

►

The fields of cusparseMatDescr_t specify details of the matrix storage
• compact symmetric, hermitian, triangular matrix storage

• 0-based or 1-based indexing

► Note: cusparseCreateMatDescr() initializes the description
to unsymmetrical matrix with 0-based indexing

CUDA - Course 194

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CUFFT functions

► A Fourier Transform can be executed according to the created plan by the functions

cufftResult
cufftExecC2C(cufftHandle plan, cufftComplex *idata,

cufftComplex *odata, int direction);

cufftResult
cufftExecR2C(cufftHandle plan, cufftReal *idata,

cufftComplex *odata);

cufftResult
cufftExecC2R(cufftHandle plan, cufftComplex *idata,

cufftReal *odata);

cufftResult
cufftExecZ2Z(cufftHandle plan, cufftDoubleComplex *idata,

cufftDoubleComplex *odata, int direction);

► The direction parameter specified forward or reverse Fourier transform. It may be
• CUFFT_FORWARD

• CUFFT_INVERSE

CUDA - Course 195

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CURAND host functions

► CURAND host functions can generate arrays of random numbers in global device
memory
• 32 and 64 bit signed integers and floats and doubles are supported

► Integers:
curandStatus_t
curandGenerate(curandGenerator_t generator,

unsigned int ∗ outputPtr, size_t num);
curandStatus_t
curandGenerateLongLong

(curandGenerator_t generator,
unsigned long long ∗ outputPtr, size_t num);

• Produces random numbers over the full range of the integer type (all bits are random)

► Floating point:
curandStatus_t
curandGenerateUniform(curandGenerator_t generator,

float∗ outputPtr, size_t num)
curandStatus_t
curandGenerateUniformDouble(curandGenerator_t generator,

double∗ outputPtr, size_t num)

• Produces random numbers in (0,1]

CUDA - Course 196

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CURAND host functions

► For floating point normal and log-normal distributions can also be generated:

curandStatus_t
curandGenerateLogNormal(curandGenerator_t generator,

float∗ outputPtr, size_t n,
float mean, float stddev);

curandStatus_t
curandGenerateLogNormalDouble(curandGenerator_t generator,

double∗ outputPtr, size_t n,
double mean, double stddev);

curandStatus_t
curandGenerateNormal(curandGenerator_t generator,

float∗ outputPtr, size_t n,
float mean, float stddev);

curandStatus_t
curandGenerateNormalDouble(curandGenerator_t generator,

double∗ outputPtr, size_t n,
double mean, double stddev);

CUDA - Course 197

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

CURAND device functions

► From device code single random numbers can be generated
with a device function call:

__device__ unsigned int curand (…∗ state);
__device__ unsigned long long curand (…∗ state);
__device__ float curand_uniform (…* state);
__device__ double curand_uniform_double (…∗ state);
__device__ float curand_normal (…∗ state);
__device__ double curand_normal_double (…∗ state);
__device__ float curand_log_normal (…∗ state,

float mean, float stddev);
__device__ double curand_log_normal_double (…* state,

double mean, double stddev);

► Note: when generating random numbers in parallel in multiple threads,
each thread should have a different state data structure!

CUDA - Course 198

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA
Exercises 13: Conjugate Gradient with CUBLAS and CUSPARSE

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 13: Conjugate Gradient

► Conjugate Gradient is an iterative solver for symmetric
positive definite matrices. It is typically used
to solve sparse linear equation systems

► The only matrix or vector operations it needs is:

• copy of vectors

• sparse matrix-vector-multiplication

• scaling of vectors (vector-scalar-multiplication),
addition of vectors and combinations thereof (saxpy, daxpy)

• scalar product, 2-norm of vector

► exercise13_cpu.c contains a CPU implementation
already using the csr data storage format of CUSPARSE

CUDA - Course 200

bxA AA
T

 0A

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 13: Conjugate Gradient

► Task:
• in exercise13_template.cu

the needed initializations of CUBLAS, CUSPARSE,
GPU memory allocation and copy of A, x and b
are already done

• replace the CPU code in the matrix/vector operation helper functions with calls
to CUBLAS or CUSPARSE

♦ csrMatrixVectorMultiplication

♦ axpy

♦ scaleVector

♦ scalarProduct

♦ vector2NormSquare

► Note: the template file in the initial state will crash,
because above functions already get passed GPU pointers,
but still contain the CPU code from exercise13_cpu.c

► Advanced exercise: check in profiler which kernels take the most time.
Can you gain performance by replacing some library calls
with your own kernels?

CUDA - Course 201

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 13: Conjugate Gradient

► Algorithm:

repeat until α is small enough {

}

CUDA - Course 202

xAbr

rp

2

r
old

pAv

vp

old

pxx vrr

2

r

prp

old

old

sparse matrix vector multiplication

scalar product

saxpy/daxpy

vector 2-norm

vector scaling/addition

sparse matrix vector multiplication

vector 2-norm

vector copy

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 13: Conjugate Gradient

► Notes
• For the sparse matrix vector multiplication the functions

cusparseScsrmv() (single precision) and
cusparseDcsrmv() (double precision) can be used

♦ The matrix is already in the correct csr format, no conversion is necessary

• For scalar product and norm
cublasSdot(), cublasDdot(), cublasSnrm2(), cublasDnrm2()
can be used

♦ Warning: cublasSnrm2() has a bug.
It returns NAN when the vector contains denormalized numbers.
Better use cublasSdot() for vector 2-norm!

• For vector addition and scaling
cublasSscal(), cublasDscal(),
cublasSaxpy(), cublasDaxpy()
can be used

• The files cublas_utils.h and cusparse_utils.h
contain the functions cublasVerify() and cusparseVerify()
for simplified error handling.

• Link executable with –lcublas –lcusparse

CUDA - Course 203

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Introduction to OpenACC

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Introduction to OpenACC

► Accelerator programming model
• Device code is written like (serial) CPU code

• Data is not explicitly copied to GPU (looks like working on CPU data structures)

• Compiler tries automatic parallelization (loop vectorization, etc.)

• Intermediate CUDA C or OpenCL code (CAPS, PGI) or PTX assembly (Cray) is
generated

► Simple example:

void VectorAdd(unsigned int size,
float* a, float* b, float* c) {

#pragma acc parallel loop
for(int i=0;i<size;i++) {
c[i]=a[i]+b[i];

}
}

CUDA - Course 205

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Parallel construct

► What is the parallel construct?

• Requests that code is to be executed on accelerator device

♦ C: next statement or ‘{ }’-block

♦ Fortran: region between ‘parallel’ and ‘end parallel’

• Without further pragmas code is to be executed

in serial on device

• ‘manual’ mode of parallelization

♦ parallelization of code has to be specified explicitly

♦ No attempt is made, e.g. to find parallelizable loops

CUDA - Course 206

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Parallel construct

► Syntax:

• C:
#pragma acc parallel

{

...

}

• Fortran:

!$acc parallel

...

!$acc end parallel

CUDA - Course 207

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Kernels construct

► What is the kernels construct?

• Requests that code is to be executed on accelerator device

♦ C: next statement or ‘{ }’-block

♦ Fortran: region between ‘kernel’ and ‘end kernel’

• ‘automatic’ mode of parallelization

♦ Compiler tries to find parallelizable code (loops, etc.) and

automatically distributes work to CUDA blocks/threads

♦ ‘kernels’ → multiple kernels may be generated

(by compiler decision)

♦ But further pragmas are still possible (to guide compiler)

CUDA - Course 208

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Kernels construct

► Syntax:

• C:
#pragma acc kernels

{

...

}

• Fortran:

!$acc kernels

...

!$acc end kernels

CUDA - Course 209

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Loop construct

► Within parallel construct:

► Tells the compiler that loop iterations are independent
and shall be executed in parallel

C:
#pragma acc parallel
{

#pragma acc loop
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

}

Fortran:
!$acc parallel
!$acc loop
do i=1,size
c(i)=a(i)+b(i)

end do
!$acc end loop
!$acc end parallel

CUDA - Course 210

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Combined parallel/loop construct

► A parallel region which consists wholly of a single loop can be
specified directly using a combined directive:

C:
#pragma acc parallel loop

for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];

}

Fortran:
!$acc parallel loop

do i=1,size

c(i)=a(i)+b(i)

end do

!$acc end parallel loop

CUDA - Course 211

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Independent clause within kernels region

► On a loop construct within a kernels region
• Tells the compiler that loop iterations are independent

(only a hint, for the case compiler cannot proof this independence by itself)

• Compiler still decides about parallelization

C:
#pragma acc kernels
{

#pragma acc loop independent
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

}

Fortran:
!$acc kernels
!$acc loop independent
do i=1,size
c(i)=a(i)+b(i)

end do
!$acc end loop
!$acc end kernels

CUDA - Course 212

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

gang, worker and vector clauses

► On a loop construct it is possible to specify over which
hardware entities parallelization should happen

• gang = group of workers
#pragma acc loop gang

#pragma acc loop gang(n)

• worker = single ‘thread’, but might contain SIMD vector unit
#pragma acc loop worker

#pragma acc loop worker(n)

• vector clause: do SIMD vectorization of loop
#pragma acc loop vector

#pragma acc loop vector(n)

• In CUDA terms

♦ Gang = GPU / Grid (Group of multiprocessors)

♦ Worker (Vector?) = Multiprocessor / Block (Group of threads)

CUDA - Course 213

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

num_gangs, num_workers and vector_length

► On a parallel of kernels construct it is possible

to specify the ‘execution configuration’ of the called kernel(s)

► Syntax

#pragma parallel num_gangs(n) num_workers(n) \

vector_length(n)

► Note: this is an imported feature for performance tuning,

as should be clear from CUDA tests

► Note: mapping of these clauses to grid size/block size may be

implementation-specific

CUDA - Course 214

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Data management

► How does data copy from/to device work?

#pragma acc parallel loop
for(int i=0;i<size;i++) {

c[i]=a[i]+b[i];
}

• Per default all arrays a[], b[], c[] are copied to device before loop is executed
and back to host afterwards

♦ Compiler might detect need to copy,
but at the moment it is rarely the case

► Simple method to configure copy operations: copyin/copyout clauses

#pragma acc parallel copyin(a[0:size],b[0:size]) \
copyout(c[0:size])

{
...

}

► Problem: data is still copied to/from host between parallel/kernels regions

CUDA - Course 215

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Data regions

► Code within data region is executed on host
(outside of parallel or kernels regions)

► The specified variables / arrays are copied from/to device
only at begin/end of data region
(even if the data regions contains many parallel/kernel regions)

► #pragma acc data copyin(a[0:size],b[0:size]) \
copyout(c[0:size])

{
...

}

► ‘copyin’ clause
• Meaning data is copied at start of data region to device

► ‘copyout’ clause
• Meaning data is copied at end of data region to host

► ‘copy’ clause
• Meaning data is copied at start of data region to device

and at end of data region back to host

CUDA - Course 216

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Array size specification

► In C with ‘pointer as array’ or Fortran with ‘(*)’-syntax compiler
does not know array size

► In these cases size specification is required on data clauses

► Syntax
• C:
#pragma acc data copyin(a[0:size],b[0:size]) \

copyout(c[0:size])
{
...

}

♦ Note: it is [begin:size] in C, but (begin:end) in Fortran (!!!)

• Fortran:
!$acc data copyin(a(1:size),b(1:size)) &

copyout(c(1:size))
...
!$acc end data

CUDA - Course 217

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Further data clauses

► ‘create’ clause
• Memory is allocated on device, but no copy is done at all

► ‘present’ clause
• Data is already present on device

► ‘present_or_copyin’, ‘present_or_copy’ clauses
• Framework checks if data is already present on device,

if not it is copied

• ‘present_or_copy’ also copies data back at end of data region

► ‘present_or_create’, ‘present_or_copyout’,
• Framework checks if data is already present on device,

if not it is allocated

• ‘present_or_copyout’ also copies data back at end of data region

► ‘deviceptr’ clause
• array is a pointer to device memory

(created with some other allocation mechanism)

CUDA Course 218

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Finer control: update directive

► Variables which are already present on device

(but may have outdated data) can be manually copied

from/to device

► #pragma acc update host(variable list)

device(variable list)

• host: variables are copied from device to host

• device: variables are copied from host to device

CUDA Course 219

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Note on variable scoping

► Are variables in device code

local per thread or globally visible?

► Default behavior:

• Arrays are globally visible

• Variables appearing in a data clause are globally visible

• Variables accessed both inside and outside of a

parallel/kernels region are globally visible

• Variables accessed only within one parallel/kernels region

are thread local

► Explicit control: private clause (on parallel, kernels, loop)

• variable is private for each thread (or iteration for loop clause)

CUDA Course 220

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Asynchronous execution

► Per default the host is expected at parallel/kernels regions

► Asynchronous execution (‘streams’) is possible, though

► Mechanism
• Add an async clause to parallel of kernels construct
#pragma acc parallel ... async
{

...
}
#pragma acc parallel ... async(n)
{

...
}

• To wait for asynchronous regions the wait directive is used
♦ wait on all asynchronous regions:

#pragma acc wait

♦ Wait only on regions with the same integer index n in the async clause:

#pragma acc wait(n)

CUDA Course 221

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Runtime library

► Beside pragmas there is a runtime library containing several
useful functions

• Include with
C: #include <openacc.h>
Fortran: use openacc

► Functions, e.g.:

• Select between multiple devices:
acc_set_device_num()

• Test for finished asynchronous regions, without blocking:
acc_async_test()

• Manual device memory management
(to be used with deviceptr):
acc_malloc(), acc_free()

CUDA Course 222

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

More features

► Private

► Reduction on loops

CUDA - Course 223

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

GPU Programming using CUDA

Exercises 14+15: OpenACC

CUDA - Course

Thomas Baumann, Oliver Mangold, Mhd. Amer Wafai

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 14: Vector operation with OpenACC

► Task:

• Create a GPU version of the vector-scalar multiplication CPU code
exercise01_cpu.c/.f90
by adding the necessary ‘acc’ pragmas

• Check with COMPUTE_PROFILE=1
that the code is actually executed on the GPU.

• How many memory copies are done?

► Advanced exercise

• Create an ‘acc data’ region around your ‘acc parallel’ region and
modify the data clauses so that the arrays are copied when
entering/leaving the data region instead of the parallel region

• Add timers around the ‘acc parallel’ region
so you can measure the duration of the kernel
without the duration of the array copies between host and device

• Note: do not forget async/wait (with the Cray compiler)

CUDA - Course 225

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Exercise 15: 2D Heat equation with OpenACC

► Task:

• exercise15_template.cl/.f90 contains the CPU version
of the 2D finite difference heat equation scheme from exercise 12

• Move the computation on the GPU with acc pragmas

• Make sure no data copy from/to host is happening
between the multiple kernel calls
(no copy inside the other loop over the time steps i=0,steps)

► Notes:

• You can check if accelerator code is generated
by using the Cray compiler option ‘–h list=m’
and looking at the ‘.lst’ file

• The field data is copied from array a to b,
then back from b to a in a loop.
Which data clauses do you actually need to save
as many unnecessary memory copies as possible?

CUDA - Course 226

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Timers with Cray Fortran Compiler

► The subroutine cpu_time() of the Cray compiler is not

suitable for timing GPU code, as it has second resolution

► Instead there is an alternative cpu_time_cray() available

► To use it you have to compile cray_fortran_timer.c

and timer.f90 and link it to your code:

cc –c cray_fortran_timer.c

ftn –c timer.f90

ftn -h pragma=acc <source file> \

cray_fortran_timer.o timer.o \

-o <executable>

CUDA Course 227

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Thank you!

► Thank you for listening!

CUDA - Course 228

